0.00/0.14 YES 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 sumto#(I0, I1) -> if#(sumto(I0 + 1, I1), I0, I1) [I1 >= I0] 0.00/0.14 sumto#(I0, I1) -> sumto#(I0 + 1, I1) [I1 >= I0] 0.00/0.14 R = 0.00/0.14 if(wrap(z), x, y) -> wrap(x + z) 0.00/0.14 sumto(I0, I1) -> if(sumto(I0 + 1, I1), I0, I1) [I1 >= I0] 0.00/0.14 sumto(I2, I3) -> wrap(0) [I2 > I3] 0.00/0.14 0.00/0.14 The dependency graph for this problem is: 0.00/0.14 0 -> 0.00/0.14 1 -> 0, 1 0.00/0.14 Where: 0.00/0.14 0) sumto#(I0, I1) -> if#(sumto(I0 + 1, I1), I0, I1) [I1 >= I0] 0.00/0.14 1) sumto#(I0, I1) -> sumto#(I0 + 1, I1) [I1 >= I0] 0.00/0.14 0.00/0.14 We have the following SCCs. 0.00/0.14 { 1 } 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 sumto#(I0, I1) -> sumto#(I0 + 1, I1) [I1 >= I0] 0.00/0.14 R = 0.00/0.14 if(wrap(z), x, y) -> wrap(x + z) 0.00/0.14 sumto(I0, I1) -> if(sumto(I0 + 1, I1), I0, I1) [I1 >= I0] 0.00/0.14 sumto(I2, I3) -> wrap(0) [I2 > I3] 0.00/0.14 0.00/0.14 We use the reverse value criterion with the projection function NU: 0.00/0.14 NU[sumto#(z1,z2)] = z2 + -1 * z1 0.00/0.14 0.00/0.14 This gives the following inequalities: 0.00/0.14 I1 >= I0 ==> I1 + -1 * I0 > I1 + -1 * (I0 + 1) with I1 + -1 * I0 >= 0 0.00/0.14 0.00/0.14 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.12 EOF