0.00/0.28 YES 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 eval_3#(x, y) -> eval_1#(x, y) [0 >= y] 0.00/0.28 eval_3#(I0, I1) -> eval_3#(I0, I1 - 1) [I1 > 0] 0.00/0.28 eval_2#(I2, I3) -> eval_1#(I2, I3) [0 >= I2] 0.00/0.28 eval_2#(I4, I5) -> eval_2#(I4 - 1, I5) [I4 > 0] 0.00/0.28 eval_1#(I6, I7) -> eval_3#(I6, I7) [I6 > 0 && I7 > 0 && I7 >= I6] 0.00/0.28 eval_1#(I8, I9) -> eval_2#(I8, I9) [I8 > 0 && I9 > 0 && I8 > I9] 0.00/0.28 R = 0.00/0.28 eval_3(x, y) -> eval_1(x, y) [0 >= y] 0.00/0.28 eval_3(I0, I1) -> eval_3(I0, I1 - 1) [I1 > 0] 0.00/0.28 eval_2(I2, I3) -> eval_1(I2, I3) [0 >= I2] 0.00/0.28 eval_2(I4, I5) -> eval_2(I4 - 1, I5) [I4 > 0] 0.00/0.28 eval_1(I6, I7) -> eval_3(I6, I7) [I6 > 0 && I7 > 0 && I7 >= I6] 0.00/0.28 eval_1(I8, I9) -> eval_2(I8, I9) [I8 > 0 && I9 > 0 && I8 > I9] 0.00/0.28 0.00/0.28 The dependency graph for this problem is: 0.00/0.28 0 -> 0.00/0.28 1 -> 0, 1 0.00/0.28 2 -> 0.00/0.28 3 -> 2, 3 0.00/0.28 4 -> 1 0.00/0.28 5 -> 3 0.00/0.28 Where: 0.00/0.28 0) eval_3#(x, y) -> eval_1#(x, y) [0 >= y] 0.00/0.28 1) eval_3#(I0, I1) -> eval_3#(I0, I1 - 1) [I1 > 0] 0.00/0.28 2) eval_2#(I2, I3) -> eval_1#(I2, I3) [0 >= I2] 0.00/0.28 3) eval_2#(I4, I5) -> eval_2#(I4 - 1, I5) [I4 > 0] 0.00/0.28 4) eval_1#(I6, I7) -> eval_3#(I6, I7) [I6 > 0 && I7 > 0 && I7 >= I6] 0.00/0.28 5) eval_1#(I8, I9) -> eval_2#(I8, I9) [I8 > 0 && I9 > 0 && I8 > I9] 0.00/0.28 0.00/0.28 We have the following SCCs. 0.00/0.28 { 1 } 0.00/0.28 { 3 } 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 eval_2#(I4, I5) -> eval_2#(I4 - 1, I5) [I4 > 0] 0.00/0.28 R = 0.00/0.28 eval_3(x, y) -> eval_1(x, y) [0 >= y] 0.00/0.28 eval_3(I0, I1) -> eval_3(I0, I1 - 1) [I1 > 0] 0.00/0.28 eval_2(I2, I3) -> eval_1(I2, I3) [0 >= I2] 0.00/0.28 eval_2(I4, I5) -> eval_2(I4 - 1, I5) [I4 > 0] 0.00/0.28 eval_1(I6, I7) -> eval_3(I6, I7) [I6 > 0 && I7 > 0 && I7 >= I6] 0.00/0.28 eval_1(I8, I9) -> eval_2(I8, I9) [I8 > 0 && I9 > 0 && I8 > I9] 0.00/0.28 0.00/0.28 We use the reverse value criterion with the projection function NU: 0.00/0.28 NU[eval_2#(z1,z2)] = z1 0.00/0.28 0.00/0.28 This gives the following inequalities: 0.00/0.28 I4 > 0 ==> I4 > I4 - 1 with I4 >= 0 0.00/0.28 0.00/0.28 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 eval_3#(I0, I1) -> eval_3#(I0, I1 - 1) [I1 > 0] 0.00/0.28 R = 0.00/0.28 eval_3(x, y) -> eval_1(x, y) [0 >= y] 0.00/0.28 eval_3(I0, I1) -> eval_3(I0, I1 - 1) [I1 > 0] 0.00/0.28 eval_2(I2, I3) -> eval_1(I2, I3) [0 >= I2] 0.00/0.28 eval_2(I4, I5) -> eval_2(I4 - 1, I5) [I4 > 0] 0.00/0.28 eval_1(I6, I7) -> eval_3(I6, I7) [I6 > 0 && I7 > 0 && I7 >= I6] 0.00/0.28 eval_1(I8, I9) -> eval_2(I8, I9) [I8 > 0 && I9 > 0 && I8 > I9] 0.00/0.28 0.00/0.28 We use the reverse value criterion with the projection function NU: 0.00/0.28 NU[eval_3#(z1,z2)] = z2 + -1 * 0 0.00/0.28 0.00/0.28 This gives the following inequalities: 0.00/0.28 I1 > 0 ==> I1 + -1 * 0 > I1 - 1 + -1 * 0 with I1 + -1 * 0 >= 0 0.00/0.28 0.00/0.28 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.26 EOF