0.00/0.45 YES 0.00/0.45 0.00/0.45 DP problem for innermost termination. 0.00/0.45 P = 0.00/0.45 eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 eval#(I0, I1) -> eval#(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 0.00/0.45 eval#(I2, I3) -> eval#(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 0.00/0.45 eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 R = 0.00/0.45 eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 0.00/0.45 eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 0.00/0.45 eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 0.00/0.45 The dependency graph for this problem is: 0.00/0.45 0 -> 0, 3 0.00/0.45 1 -> 0.00/0.45 2 -> 0.00/0.45 3 -> 0, 3 0.00/0.45 Where: 0.00/0.45 0) eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 1) eval#(I0, I1) -> eval#(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 0.00/0.45 2) eval#(I2, I3) -> eval#(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 0.00/0.45 3) eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 0.00/0.45 We have the following SCCs. 0.00/0.45 { 0, 3 } 0.00/0.45 0.00/0.45 DP problem for innermost termination. 0.00/0.45 P = 0.00/0.45 eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 R = 0.00/0.45 eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 0.00/0.45 eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 0.00/0.45 eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 0.00/0.45 We use the reverse value criterion with the projection function NU: 0.00/0.45 NU[eval#(z1,z2)] = z1 0.00/0.45 0.00/0.45 This gives the following inequalities: 0.00/0.45 y > x && x > 0 && y > 0 && y >= x ==> x >= x 0.00/0.45 I4 > I5 && I4 > 0 && I5 > 0 ==> I4 > I4 - I5 with I4 >= 0 0.00/0.45 0.00/0.45 We remove all the strictly oriented dependency pairs. 0.00/0.45 0.00/0.45 DP problem for innermost termination. 0.00/0.45 P = 0.00/0.45 eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 R = 0.00/0.45 eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 0.00/0.45 eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 0.00/0.45 eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 0.00/0.45 eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] 0.00/0.45 0.00/0.45 We use the reverse value criterion with the projection function NU: 0.00/0.45 NU[eval#(z1,z2)] = z2 + -1 * z1 0.00/0.45 0.00/0.45 This gives the following inequalities: 0.00/0.45 y > x && x > 0 && y > 0 && y >= x ==> y + -1 * x > y - x + -1 * x with y + -1 * x >= 0 0.00/0.45 0.00/0.45 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.43 EOF