5.15/2.17 YES 5.15/2.19 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 5.15/2.19 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.15/2.19 5.15/2.19 5.15/2.19 Termination of the given ITRS could be proven: 5.15/2.19 5.15/2.19 (0) ITRS 5.15/2.19 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 5.15/2.19 (2) IDP 5.15/2.19 (3) UsableRulesProof [EQUIVALENT, 0 ms] 5.15/2.19 (4) IDP 5.15/2.19 (5) IDPNonInfProof [SOUND, 296 ms] 5.15/2.19 (6) IDP 5.15/2.19 (7) IDependencyGraphProof [EQUIVALENT, 0 ms] 5.15/2.19 (8) IDP 5.15/2.19 (9) IDPNonInfProof [SOUND, 20 ms] 5.15/2.19 (10) IDP 5.15/2.19 (11) IDependencyGraphProof [EQUIVALENT, 0 ms] 5.15/2.19 (12) TRUE 5.15/2.19 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (0) 5.15/2.19 Obligation: 5.15/2.19 ITRS problem: 5.15/2.19 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 The TRS R consists of the following rules: 5.15/2.19 eval_1(x, y) -> Cond_eval_1(x > 0, x, y) 5.15/2.19 Cond_eval_1(TRUE, x, y) -> eval_2(x, 0) 5.15/2.19 eval_2(x, y) -> Cond_eval_2(x > 0 && y >= 0 && x > y, x, y) 5.15/2.19 Cond_eval_2(TRUE, x, y) -> eval_2(x, y + 1) 5.15/2.19 eval_2(x, y) -> Cond_eval_21(x > 0 && y >= 0 && y >= x, x, y) 5.15/2.19 Cond_eval_21(TRUE, x, y) -> eval_1(x - 1, y) 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (1) ITRStoIDPProof (EQUIVALENT) 5.15/2.19 Added dependency pairs 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (2) 5.15/2.19 Obligation: 5.15/2.19 IDP problem: 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 5.15/2.19 The following domains are used: 5.15/2.19 Integer, Boolean 5.15/2.19 5.15/2.19 The ITRS R consists of the following rules: 5.15/2.19 eval_1(x, y) -> Cond_eval_1(x > 0, x, y) 5.15/2.19 Cond_eval_1(TRUE, x, y) -> eval_2(x, 0) 5.15/2.19 eval_2(x, y) -> Cond_eval_2(x > 0 && y >= 0 && x > y, x, y) 5.15/2.19 Cond_eval_2(TRUE, x, y) -> eval_2(x, y + 1) 5.15/2.19 eval_2(x, y) -> Cond_eval_21(x > 0 && y >= 0 && y >= x, x, y) 5.15/2.19 Cond_eval_21(TRUE, x, y) -> eval_1(x - 1, y) 5.15/2.19 5.15/2.19 The integer pair graph contains the following rules and edges: 5.15/2.19 (0): EVAL_1(x[0], y[0]) -> COND_EVAL_1(x[0] > 0, x[0], y[0]) 5.15/2.19 (1): COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) 5.15/2.19 (2): EVAL_2(x[2], y[2]) -> COND_EVAL_2(x[2] > 0 && y[2] >= 0 && x[2] > y[2], x[2], y[2]) 5.15/2.19 (3): COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], y[3] + 1) 5.15/2.19 (4): EVAL_2(x[4], y[4]) -> COND_EVAL_21(x[4] > 0 && y[4] >= 0 && y[4] >= x[4], x[4], y[4]) 5.15/2.19 (5): COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(x[5] - 1, y[5]) 5.15/2.19 5.15/2.19 (0) -> (1), if (x[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) 5.15/2.19 (1) -> (2), if (x[1] ->^* x[2] & 0 ->^* y[2]) 5.15/2.19 (1) -> (4), if (x[1] ->^* x[4] & 0 ->^* y[4]) 5.15/2.19 (2) -> (3), if (x[2] > 0 && y[2] >= 0 && x[2] > y[2] & x[2] ->^* x[3] & y[2] ->^* y[3]) 5.15/2.19 (3) -> (2), if (x[3] ->^* x[2] & y[3] + 1 ->^* y[2]) 5.15/2.19 (3) -> (4), if (x[3] ->^* x[4] & y[3] + 1 ->^* y[4]) 5.15/2.19 (4) -> (5), if (x[4] > 0 && y[4] >= 0 && y[4] >= x[4] & x[4] ->^* x[5] & y[4] ->^* y[5]) 5.15/2.19 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0]) 5.15/2.19 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (3) UsableRulesProof (EQUIVALENT) 5.15/2.19 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (4) 5.15/2.19 Obligation: 5.15/2.19 IDP problem: 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 5.15/2.19 The following domains are used: 5.15/2.19 Integer, Boolean 5.15/2.19 5.15/2.19 R is empty. 5.15/2.19 5.15/2.19 The integer pair graph contains the following rules and edges: 5.15/2.19 (0): EVAL_1(x[0], y[0]) -> COND_EVAL_1(x[0] > 0, x[0], y[0]) 5.15/2.19 (1): COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) 5.15/2.19 (2): EVAL_2(x[2], y[2]) -> COND_EVAL_2(x[2] > 0 && y[2] >= 0 && x[2] > y[2], x[2], y[2]) 5.15/2.19 (3): COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], y[3] + 1) 5.15/2.19 (4): EVAL_2(x[4], y[4]) -> COND_EVAL_21(x[4] > 0 && y[4] >= 0 && y[4] >= x[4], x[4], y[4]) 5.15/2.19 (5): COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(x[5] - 1, y[5]) 5.15/2.19 5.15/2.19 (0) -> (1), if (x[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) 5.15/2.19 (1) -> (2), if (x[1] ->^* x[2] & 0 ->^* y[2]) 5.15/2.19 (1) -> (4), if (x[1] ->^* x[4] & 0 ->^* y[4]) 5.15/2.19 (2) -> (3), if (x[2] > 0 && y[2] >= 0 && x[2] > y[2] & x[2] ->^* x[3] & y[2] ->^* y[3]) 5.15/2.19 (3) -> (2), if (x[3] ->^* x[2] & y[3] + 1 ->^* y[2]) 5.15/2.19 (3) -> (4), if (x[3] ->^* x[4] & y[3] + 1 ->^* y[4]) 5.15/2.19 (4) -> (5), if (x[4] > 0 && y[4] >= 0 && y[4] >= x[4] & x[4] ->^* x[5] & y[4] ->^* y[5]) 5.15/2.19 (5) -> (0), if (x[5] - 1 ->^* x[0] & y[5] ->^* y[0]) 5.15/2.19 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (5) IDPNonInfProof (SOUND) 5.15/2.19 Used the following options for this NonInfProof: 5.15/2.19 5.15/2.19 IDPGPoloSolver: 5.15/2.19 Range: [(-1,2)] 5.15/2.19 IsNat: false 5.15/2.19 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@133d64fc 5.15/2.19 Constraint Generator: NonInfConstraintGenerator: 5.15/2.19 PathGenerator: MetricPathGenerator: 5.15/2.19 Max Left Steps: 1 5.15/2.19 Max Right Steps: 1 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 The constraints were generated the following way: 5.15/2.19 5.15/2.19 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 5.15/2.19 5.15/2.19 Note that final constraints are written in bold face. 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair EVAL_1(x, y) -> COND_EVAL_1(>(x, 0), x, y) the following chains were created: 5.15/2.19 *We consider the chain EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]), COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (>(x[0], 0)=TRUE & x[0]=x[1] & y[0]=y[1] ==> EVAL_1(x[0], y[0])_>=_NonInfC & EVAL_1(x[0], y[0])_>=_COND_EVAL_1(>(x[0], 0), x[0], y[0]) & (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rule (IV) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[0], 0)=TRUE ==> EVAL_1(x[0], y[0])_>=_NonInfC & EVAL_1(x[0], y[0])_>=_COND_EVAL_1(>(x[0], 0), x[0], y[0]) & (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=) & [(-1)Bound*bni_24] + [(2)bni_24]x[0] >= 0 & [(-1)bso_25] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=) & [(-1)Bound*bni_24] + [(2)bni_24]x[0] >= 0 & [(-1)bso_25] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=) & [(-1)Bound*bni_24] + [(2)bni_24]x[0] >= 0 & [(-1)bso_25] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (6) (x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=) & 0 = 0 & [(-1)Bound*bni_24] + [(2)bni_24]x[0] >= 0 & [(-1)bso_25] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair COND_EVAL_1(TRUE, x, y) -> EVAL_2(x, 0) the following chains were created: 5.15/2.19 *We consider the chain EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]), COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0), EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (>(x[0], 0)=TRUE & x[0]=x[1] & y[0]=y[1] & x[1]=x[2] & 0=y[2] ==> COND_EVAL_1(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1])_>=_EVAL_2(x[1], 0) & (U^Increasing(EVAL_2(x[1], 0)), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[0], 0)=TRUE ==> COND_EVAL_1(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL_1(TRUE, x[0], y[0])_>=_EVAL_2(x[0], 0) & (U^Increasing(EVAL_2(x[1], 0)), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (6) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & 0 = 0 & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & 0 = 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *We consider the chain EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]), COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0), EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (>(x[0], 0)=TRUE & x[0]=x[1] & y[0]=y[1] & x[1]=x[4] & 0=y[4] ==> COND_EVAL_1(TRUE, x[1], y[1])_>=_NonInfC & COND_EVAL_1(TRUE, x[1], y[1])_>=_EVAL_2(x[1], 0) & (U^Increasing(EVAL_2(x[1], 0)), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[0], 0)=TRUE ==> COND_EVAL_1(TRUE, x[0], y[0])_>=_NonInfC & COND_EVAL_1(TRUE, x[0], y[0])_>=_EVAL_2(x[0], 0) & (U^Increasing(EVAL_2(x[1], 0)), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (6) (x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & 0 = 0 & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & 0 = 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair EVAL_2(x, y) -> COND_EVAL_2(&&(&&(>(x, 0), >=(y, 0)), >(x, y)), x, y) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]), COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2]))=TRUE & x[2]=x[3] & y[2]=y[3] ==> EVAL_2(x[2], y[2])_>=_NonInfC & EVAL_2(x[2], y[2])_>=_COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) & (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[2], y[2])=TRUE & >(x[2], 0)=TRUE & >=(y[2], 0)=TRUE ==> EVAL_2(x[2], y[2])_>=_NonInfC & EVAL_2(x[2], y[2])_>=_COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) & (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)Bound*bni_28] + [(2)bni_28]x[2] >= 0 & [(-1)bso_29] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)Bound*bni_28] + [(2)bni_28]x[2] >= 0 & [(-1)bso_29] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)Bound*bni_28] + [(2)bni_28]x[2] >= 0 & [(-1)bso_29] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair COND_EVAL_2(TRUE, x, y) -> EVAL_2(x, +(y, 1)) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]), COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)), EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[2]1 & +(y[3], 1)=y[2]1 ==> COND_EVAL_2(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL_2(TRUE, x[3], y[3])_>=_EVAL_2(x[3], +(y[3], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[2], y[2])=TRUE & >(x[2], 0)=TRUE & >=(y[2], 0)=TRUE ==> COND_EVAL_2(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL_2(TRUE, x[2], y[2])_>=_EVAL_2(x[2], +(y[2], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *We consider the chain EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]), COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)), EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[4] & +(y[3], 1)=y[4] ==> COND_EVAL_2(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL_2(TRUE, x[3], y[3])_>=_EVAL_2(x[3], +(y[3], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[2], y[2])=TRUE & >(x[2], 0)=TRUE & >=(y[2], 0)=TRUE ==> COND_EVAL_2(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL_2(TRUE, x[2], y[2])_>=_EVAL_2(x[2], +(y[2], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair EVAL_2(x, y) -> COND_EVAL_21(&&(&&(>(x, 0), >=(y, 0)), >=(y, x)), x, y) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]), COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(-(x[5], 1), y[5]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4]))=TRUE & x[4]=x[5] & y[4]=y[5] ==> EVAL_2(x[4], y[4])_>=_NonInfC & EVAL_2(x[4], y[4])_>=_COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) & (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>=(y[4], x[4])=TRUE & >(x[4], 0)=TRUE & >=(y[4], 0)=TRUE ==> EVAL_2(x[4], y[4])_>=_NonInfC & EVAL_2(x[4], y[4])_>=_COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) & (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=) & [(-1)Bound*bni_32] + [(2)bni_32]x[4] >= 0 & [(-1)bso_33] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=) & [(-1)Bound*bni_32] + [(2)bni_32]x[4] >= 0 & [(-1)bso_33] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=) & [(-1)Bound*bni_32] + [(2)bni_32]x[4] >= 0 & [(-1)bso_33] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair COND_EVAL_21(TRUE, x, y) -> EVAL_1(-(x, 1), y) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]), COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(-(x[5], 1), y[5]), EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4]))=TRUE & x[4]=x[5] & y[4]=y[5] & -(x[5], 1)=x[0] & y[5]=y[0] ==> COND_EVAL_21(TRUE, x[5], y[5])_>=_NonInfC & COND_EVAL_21(TRUE, x[5], y[5])_>=_EVAL_1(-(x[5], 1), y[5]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>=(y[4], x[4])=TRUE & >(x[4], 0)=TRUE & >=(y[4], 0)=TRUE ==> COND_EVAL_21(TRUE, x[4], y[4])_>=_NonInfC & COND_EVAL_21(TRUE, x[4], y[4])_>=_EVAL_1(-(x[4], 1), y[4]) & (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [(2)bni_34]x[4] >= 0 & [1 + (-1)bso_35] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [(2)bni_34]x[4] >= 0 & [1 + (-1)bso_35] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [(2)bni_34]x[4] >= 0 & [1 + (-1)bso_35] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 To summarize, we get the following constraints P__>=_ for the following pairs. 5.15/2.19 5.15/2.19 *EVAL_1(x, y) -> COND_EVAL_1(>(x, 0), x, y) 5.15/2.19 5.15/2.19 *(x[0] + [-1] >= 0 ==> (U^Increasing(COND_EVAL_1(>(x[0], 0), x[0], y[0])), >=) & 0 = 0 & [(-1)Bound*bni_24] + [(2)bni_24]x[0] >= 0 & [(-1)bso_25] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *COND_EVAL_1(TRUE, x, y) -> EVAL_2(x, 0) 5.15/2.19 5.15/2.19 *(x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & 0 = 0 & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & 0 = 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 *(x[0] + [-1] >= 0 ==> (U^Increasing(EVAL_2(x[1], 0)), >=) & 0 = 0 & [(-1)Bound*bni_26] + [(2)bni_26]x[0] >= 0 & 0 = 0 & [(-1)bso_27] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *EVAL_2(x, y) -> COND_EVAL_2(&&(&&(>(x, 0), >=(y, 0)), >(x, y)), x, y) 5.15/2.19 5.15/2.19 *(x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)Bound*bni_28] + [(2)bni_28]x[2] >= 0 & [(-1)bso_29] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *COND_EVAL_2(TRUE, x, y) -> EVAL_2(x, +(y, 1)) 5.15/2.19 5.15/2.19 *(x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 *(x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)Bound*bni_30] + [(2)bni_30]x[2] >= 0 & [(-1)bso_31] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *EVAL_2(x, y) -> COND_EVAL_21(&&(&&(>(x, 0), >=(y, 0)), >=(y, x)), x, y) 5.15/2.19 5.15/2.19 *(y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4])), >=) & [(-1)Bound*bni_32] + [(2)bni_32]x[4] >= 0 & [(-1)bso_33] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *COND_EVAL_21(TRUE, x, y) -> EVAL_1(-(x, 1), y) 5.15/2.19 5.15/2.19 *(y[4] + [-1]x[4] >= 0 & x[4] + [-1] >= 0 & y[4] >= 0 ==> (U^Increasing(EVAL_1(-(x[5], 1), y[5])), >=) & [(-1)bni_34 + (-1)Bound*bni_34] + [(2)bni_34]x[4] >= 0 & [1 + (-1)bso_35] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 5.15/2.19 5.15/2.19 Using the following integer polynomial ordering the resulting constraints can be solved 5.15/2.19 5.15/2.19 Polynomial interpretation over integers[POLO]: 5.15/2.19 5.15/2.19 POL(TRUE) = 0 5.15/2.19 POL(FALSE) = [3] 5.15/2.19 POL(EVAL_1(x_1, x_2)) = [2]x_1 5.15/2.19 POL(COND_EVAL_1(x_1, x_2, x_3)) = [2]x_2 5.15/2.19 POL(>(x_1, x_2)) = [-1] 5.15/2.19 POL(0) = 0 5.15/2.19 POL(EVAL_2(x_1, x_2)) = [2]x_1 5.15/2.19 POL(COND_EVAL_2(x_1, x_2, x_3)) = [2]x_2 5.15/2.19 POL(&&(x_1, x_2)) = [-1] 5.15/2.19 POL(>=(x_1, x_2)) = [-1] 5.15/2.19 POL(+(x_1, x_2)) = x_1 + x_2 5.15/2.19 POL(1) = [1] 5.15/2.19 POL(COND_EVAL_21(x_1, x_2, x_3)) = [-1] + [2]x_2 + [-1]x_1 5.15/2.19 POL(-(x_1, x_2)) = x_1 + [-1]x_2 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_>: 5.15/2.19 5.15/2.19 5.15/2.19 COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(-(x[5], 1), y[5]) 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_bound: 5.15/2.19 5.15/2.19 5.15/2.19 EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]) 5.15/2.19 COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) 5.15/2.19 EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) 5.15/2.19 COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) 5.15/2.19 EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) 5.15/2.19 COND_EVAL_21(TRUE, x[5], y[5]) -> EVAL_1(-(x[5], 1), y[5]) 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_>=: 5.15/2.19 5.15/2.19 5.15/2.19 EVAL_1(x[0], y[0]) -> COND_EVAL_1(>(x[0], 0), x[0], y[0]) 5.15/2.19 COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) 5.15/2.19 EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) 5.15/2.19 COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) 5.15/2.19 EVAL_2(x[4], y[4]) -> COND_EVAL_21(&&(&&(>(x[4], 0), >=(y[4], 0)), >=(y[4], x[4])), x[4], y[4]) 5.15/2.19 5.15/2.19 5.15/2.19 At least the following rules have been oriented under context sensitive arithmetic replacement: 5.15/2.19 5.15/2.19 TRUE^1 -> &&(TRUE, TRUE)^1 5.15/2.19 FALSE^1 -> &&(TRUE, FALSE)^1 5.15/2.19 FALSE^1 -> &&(FALSE, TRUE)^1 5.15/2.19 FALSE^1 -> &&(FALSE, FALSE)^1 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (6) 5.15/2.19 Obligation: 5.15/2.19 IDP problem: 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 5.15/2.19 The following domains are used: 5.15/2.19 Integer, Boolean 5.15/2.19 5.15/2.19 R is empty. 5.15/2.19 5.15/2.19 The integer pair graph contains the following rules and edges: 5.15/2.19 (0): EVAL_1(x[0], y[0]) -> COND_EVAL_1(x[0] > 0, x[0], y[0]) 5.15/2.19 (1): COND_EVAL_1(TRUE, x[1], y[1]) -> EVAL_2(x[1], 0) 5.15/2.19 (2): EVAL_2(x[2], y[2]) -> COND_EVAL_2(x[2] > 0 && y[2] >= 0 && x[2] > y[2], x[2], y[2]) 5.15/2.19 (3): COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], y[3] + 1) 5.15/2.19 (4): EVAL_2(x[4], y[4]) -> COND_EVAL_21(x[4] > 0 && y[4] >= 0 && y[4] >= x[4], x[4], y[4]) 5.15/2.19 5.15/2.19 (0) -> (1), if (x[0] > 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) 5.15/2.19 (1) -> (2), if (x[1] ->^* x[2] & 0 ->^* y[2]) 5.15/2.19 (3) -> (2), if (x[3] ->^* x[2] & y[3] + 1 ->^* y[2]) 5.15/2.19 (2) -> (3), if (x[2] > 0 && y[2] >= 0 && x[2] > y[2] & x[2] ->^* x[3] & y[2] ->^* y[3]) 5.15/2.19 (1) -> (4), if (x[1] ->^* x[4] & 0 ->^* y[4]) 5.15/2.19 (3) -> (4), if (x[3] ->^* x[4] & y[3] + 1 ->^* y[4]) 5.15/2.19 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (7) IDependencyGraphProof (EQUIVALENT) 5.15/2.19 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (8) 5.15/2.19 Obligation: 5.15/2.19 IDP problem: 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 5.15/2.19 The following domains are used: 5.15/2.19 Integer, Boolean 5.15/2.19 5.15/2.19 R is empty. 5.15/2.19 5.15/2.19 The integer pair graph contains the following rules and edges: 5.15/2.19 (3): COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], y[3] + 1) 5.15/2.19 (2): EVAL_2(x[2], y[2]) -> COND_EVAL_2(x[2] > 0 && y[2] >= 0 && x[2] > y[2], x[2], y[2]) 5.15/2.19 5.15/2.19 (3) -> (2), if (x[3] ->^* x[2] & y[3] + 1 ->^* y[2]) 5.15/2.19 (2) -> (3), if (x[2] > 0 && y[2] >= 0 && x[2] > y[2] & x[2] ->^* x[3] & y[2] ->^* y[3]) 5.15/2.19 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (9) IDPNonInfProof (SOUND) 5.15/2.19 Used the following options for this NonInfProof: 5.15/2.19 5.15/2.19 IDPGPoloSolver: 5.15/2.19 Range: [(-1,2)] 5.15/2.19 IsNat: false 5.15/2.19 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@133d64fc 5.15/2.19 Constraint Generator: NonInfConstraintGenerator: 5.15/2.19 PathGenerator: MetricPathGenerator: 5.15/2.19 Max Left Steps: 1 5.15/2.19 Max Right Steps: 1 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 The constraints were generated the following way: 5.15/2.19 5.15/2.19 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 5.15/2.19 5.15/2.19 Note that final constraints are written in bold face. 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]), COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)), EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2]))=TRUE & x[2]=x[3] & y[2]=y[3] & x[3]=x[2]1 & +(y[3], 1)=y[2]1 ==> COND_EVAL_2(TRUE, x[3], y[3])_>=_NonInfC & COND_EVAL_2(TRUE, x[3], y[3])_>=_EVAL_2(x[3], +(y[3], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[2], y[2])=TRUE & >(x[2], 0)=TRUE & >=(y[2], 0)=TRUE ==> COND_EVAL_2(TRUE, x[2], y[2])_>=_NonInfC & COND_EVAL_2(TRUE, x[2], y[2])_>=_EVAL_2(x[2], +(y[2], 1)) & (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[2] + [(2)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[2] + [(2)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[2] + [(2)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 For Pair EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) the following chains were created: 5.15/2.19 *We consider the chain EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]), COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) which results in the following constraint: 5.15/2.19 5.15/2.19 (1) (&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2]))=TRUE & x[2]=x[3] & y[2]=y[3] ==> EVAL_2(x[2], y[2])_>=_NonInfC & EVAL_2(x[2], y[2])_>=_COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) & (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 5.15/2.19 5.15/2.19 (2) (>(x[2], y[2])=TRUE & >(x[2], 0)=TRUE & >=(y[2], 0)=TRUE ==> EVAL_2(x[2], y[2])_>=_NonInfC & EVAL_2(x[2], y[2])_>=_COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) & (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=)) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 5.15/2.19 5.15/2.19 (3) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]y[2] + [(2)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 5.15/2.19 5.15/2.19 (4) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]y[2] + [(2)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 5.15/2.19 5.15/2.19 (5) (x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]y[2] + [(2)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 To summarize, we get the following constraints P__>=_ for the following pairs. 5.15/2.19 5.15/2.19 *COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) 5.15/2.19 5.15/2.19 *(x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(EVAL_2(x[3], +(y[3], 1))), >=) & [(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]y[2] + [(2)bni_13]x[2] >= 0 & [1 + (-1)bso_14] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 *EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) 5.15/2.19 5.15/2.19 *(x[2] + [-1] + [-1]y[2] >= 0 & x[2] + [-1] >= 0 & y[2] >= 0 ==> (U^Increasing(COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2])), >=) & [(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]y[2] + [(2)bni_15]x[2] >= 0 & [(-1)bso_16] >= 0) 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 5.15/2.19 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 5.15/2.19 5.15/2.19 Using the following integer polynomial ordering the resulting constraints can be solved 5.15/2.19 5.15/2.19 Polynomial interpretation over integers[POLO]: 5.15/2.19 5.15/2.19 POL(TRUE) = 0 5.15/2.19 POL(FALSE) = 0 5.15/2.19 POL(COND_EVAL_2(x_1, x_2, x_3)) = [-1] + [-1]x_3 + [2]x_2 5.15/2.19 POL(EVAL_2(x_1, x_2)) = [-1] + [-1]x_2 + [2]x_1 5.15/2.19 POL(+(x_1, x_2)) = x_1 + x_2 5.15/2.19 POL(1) = [1] 5.15/2.19 POL(&&(x_1, x_2)) = [-1] 5.15/2.19 POL(>(x_1, x_2)) = [-1] 5.15/2.19 POL(0) = 0 5.15/2.19 POL(>=(x_1, x_2)) = [-1] 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_>: 5.15/2.19 5.15/2.19 5.15/2.19 COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_bound: 5.15/2.19 5.15/2.19 5.15/2.19 COND_EVAL_2(TRUE, x[3], y[3]) -> EVAL_2(x[3], +(y[3], 1)) 5.15/2.19 EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) 5.15/2.19 5.15/2.19 5.15/2.19 The following pairs are in P_>=: 5.15/2.19 5.15/2.19 5.15/2.19 EVAL_2(x[2], y[2]) -> COND_EVAL_2(&&(&&(>(x[2], 0), >=(y[2], 0)), >(x[2], y[2])), x[2], y[2]) 5.15/2.19 5.15/2.19 5.15/2.19 At least the following rules have been oriented under context sensitive arithmetic replacement: 5.15/2.19 5.15/2.19 FALSE^1 -> &&(FALSE, FALSE)^1 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (10) 5.15/2.19 Obligation: 5.15/2.19 IDP problem: 5.15/2.19 The following function symbols are pre-defined: 5.15/2.19 <<< 5.15/2.19 & ~ Bwand: (Integer, Integer) -> Integer 5.15/2.19 >= ~ Ge: (Integer, Integer) -> Boolean 5.15/2.19 | ~ Bwor: (Integer, Integer) -> Integer 5.15/2.19 / ~ Div: (Integer, Integer) -> Integer 5.15/2.19 != ~ Neq: (Integer, Integer) -> Boolean 5.15/2.19 && ~ Land: (Boolean, Boolean) -> Boolean 5.15/2.19 ! ~ Lnot: (Boolean) -> Boolean 5.15/2.19 = ~ Eq: (Integer, Integer) -> Boolean 5.15/2.19 <= ~ Le: (Integer, Integer) -> Boolean 5.15/2.19 ^ ~ Bwxor: (Integer, Integer) -> Integer 5.15/2.19 % ~ Mod: (Integer, Integer) -> Integer 5.15/2.19 > ~ Gt: (Integer, Integer) -> Boolean 5.15/2.19 + ~ Add: (Integer, Integer) -> Integer 5.15/2.19 -1 ~ UnaryMinus: (Integer) -> Integer 5.15/2.19 < ~ Lt: (Integer, Integer) -> Boolean 5.15/2.19 || ~ Lor: (Boolean, Boolean) -> Boolean 5.15/2.19 - ~ Sub: (Integer, Integer) -> Integer 5.15/2.19 ~ ~ Bwnot: (Integer) -> Integer 5.15/2.19 * ~ Mul: (Integer, Integer) -> Integer 5.15/2.19 >>> 5.15/2.19 5.15/2.19 5.15/2.19 The following domains are used: 5.15/2.19 Boolean, Integer 5.15/2.19 5.15/2.19 R is empty. 5.15/2.19 5.15/2.19 The integer pair graph contains the following rules and edges: 5.15/2.19 (2): EVAL_2(x[2], y[2]) -> COND_EVAL_2(x[2] > 0 && y[2] >= 0 && x[2] > y[2], x[2], y[2]) 5.15/2.19 5.15/2.19 5.15/2.19 The set Q consists of the following terms: 5.15/2.19 eval_1(x0, x1) 5.15/2.19 Cond_eval_1(TRUE, x0, x1) 5.15/2.19 eval_2(x0, x1) 5.15/2.19 Cond_eval_2(TRUE, x0, x1) 5.15/2.19 Cond_eval_21(TRUE, x0, x1) 5.15/2.19 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (11) IDependencyGraphProof (EQUIVALENT) 5.15/2.19 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 5.15/2.19 ---------------------------------------- 5.15/2.19 5.15/2.19 (12) 5.15/2.19 TRUE 5.15/2.23 EOF