0.00/0.40 YES 0.00/0.40 0.00/0.40 DP problem for innermost termination. 0.00/0.40 P = 0.00/0.40 eval#(x, y, z) -> eval#(x, y, z) [x + y > z && z >= 0 && 0 >= x && 0 >= y] 0.00/0.40 eval#(I0, I1, I2) -> eval#(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 eval#(I3, I4, I5) -> eval#(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 R = 0.00/0.40 eval(x, y, z) -> eval(x, y, z) [x + y > z && z >= 0 && 0 >= x && 0 >= y] 0.00/0.40 eval(I0, I1, I2) -> eval(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 eval(I3, I4, I5) -> eval(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 0.00/0.40 The dependency graph for this problem is: 0.00/0.40 0 -> 0.00/0.40 1 -> 1 0.00/0.40 2 -> 1, 2 0.00/0.40 Where: 0.00/0.40 0) eval#(x, y, z) -> eval#(x, y, z) [x + y > z && z >= 0 && 0 >= x && 0 >= y] 0.00/0.40 1) eval#(I0, I1, I2) -> eval#(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 2) eval#(I3, I4, I5) -> eval#(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 0.00/0.40 We have the following SCCs. 0.00/0.40 { 2 } 0.00/0.40 { 1 } 0.00/0.40 0.00/0.40 DP problem for innermost termination. 0.00/0.40 P = 0.00/0.40 eval#(I0, I1, I2) -> eval#(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 R = 0.00/0.40 eval(x, y, z) -> eval(x, y, z) [x + y > z && z >= 0 && 0 >= x && 0 >= y] 0.00/0.40 eval(I0, I1, I2) -> eval(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 eval(I3, I4, I5) -> eval(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 0.00/0.40 We use the reverse value criterion with the projection function NU: 0.00/0.40 NU[eval#(z1,z2,z3)] = z2 0.00/0.40 0.00/0.40 This gives the following inequalities: 0.00/0.40 I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0 ==> I1 > I1 - 1 with I1 >= 0 0.00/0.40 0.00/0.40 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.40 0.00/0.40 DP problem for innermost termination. 0.00/0.40 P = 0.00/0.40 eval#(I3, I4, I5) -> eval#(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 R = 0.00/0.40 eval(x, y, z) -> eval(x, y, z) [x + y > z && z >= 0 && 0 >= x && 0 >= y] 0.00/0.40 eval(I0, I1, I2) -> eval(I0, I1 - 1, I2) [I0 + I1 > I2 && I2 >= 0 && 0 >= I0 && I1 > 0] 0.00/0.40 eval(I3, I4, I5) -> eval(I3 - 1, I4, I5) [I3 + I4 > I5 && I5 >= 0 && I3 > 0] 0.00/0.40 0.00/0.40 We use the reverse value criterion with the projection function NU: 0.00/0.40 NU[eval#(z1,z2,z3)] = z1 + z2 + -1 * z3 0.00/0.40 0.00/0.40 This gives the following inequalities: 0.00/0.40 I3 + I4 > I5 && I5 >= 0 && I3 > 0 ==> I3 + I4 + -1 * I5 > I3 - 1 + I4 + -1 * I5 with I3 + I4 + -1 * I5 >= 0 0.00/0.40 0.00/0.40 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.38 EOF