0.00/0.17 YES 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 ft#(true, x, y) -> ft#(y >= x, x + 1, y) 0.00/0.17 f#(true, I0) -> ft#(true, I0, I1) 0.00/0.17 R = 0.00/0.17 ft(true, x, y) -> ft(y >= x, x + 1, y) 0.00/0.17 f(true, I0) -> ft(true, I0, I1) 0.00/0.17 0.00/0.17 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 ft#(true, x, y) -> ft_1#(x, y) 0.00/0.17 f#(true, I0) -> ft#(true, I0, I1) 0.00/0.17 ft_1#(x, y) -> ft#(y >= x, x + 1, y) 0.00/0.17 ft_1#(x, y) -> ft_1#(x + 1, y) [y >= x] 0.00/0.17 f#(true, I0) -> ft_1#(I0, I1) [true] 0.00/0.17 R = 0.00/0.17 ft(true, x, y) -> ft(y >= x, x + 1, y) 0.00/0.17 f(true, I0) -> ft(true, I0, I1) 0.00/0.17 0.00/0.17 The dependency graph for this problem is: 0.00/0.17 0 -> 3, 2 0.00/0.17 1 -> 0.00/0.17 2 -> 0.00/0.17 3 -> 3, 2 0.00/0.17 4 -> 2, 3 0.00/0.17 Where: 0.00/0.17 0) ft#(true, x, y) -> ft_1#(x, y) 0.00/0.17 1) f#(true, I0) -> ft#(true, I0, I1) 0.00/0.17 2) ft_1#(x, y) -> ft#(y >= x, x + 1, y) 0.00/0.17 3) ft_1#(x, y) -> ft_1#(x + 1, y) [y >= x] 0.00/0.17 4) f#(true, I0) -> ft_1#(I0, I1) [true] 0.00/0.17 0.00/0.17 We have the following SCCs. 0.00/0.17 { 3 } 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 ft_1#(x, y) -> ft_1#(x + 1, y) [y >= x] 0.00/0.17 R = 0.00/0.17 ft(true, x, y) -> ft(y >= x, x + 1, y) 0.00/0.17 f(true, I0) -> ft(true, I0, I1) 0.00/0.17 0.00/0.17 We use the reverse value criterion with the projection function NU: 0.00/0.17 NU[ft_1#(z1,z2)] = z2 + -1 * z1 0.00/0.17 0.00/0.17 This gives the following inequalities: 0.00/0.17 y >= x ==> y + -1 * x > y + -1 * (x + 1) with y + -1 * x >= 0 0.00/0.17 0.00/0.17 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.15 EOF