0.00/0.17 YES 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 sif#(true, I0, I1) -> sum#(I0, I1 + 1) 0.00/0.17 sum#(I2, I3) -> sif#(I2 >= I3, I2, I3) 0.00/0.17 R = 0.00/0.17 sif(false, x, y) -> 0 0.00/0.17 sif(true, I0, I1) -> I1 + sum(I0, I1 + 1) 0.00/0.17 sum(I2, I3) -> sif(I2 >= I3, I2, I3) 0.00/0.17 0.00/0.17 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 sif#(true, I0, I1) -> sum#(I0, I1 + 1) 0.00/0.17 sum#(I2, I3) -> sif#(I2 >= I3, I2, I3) 0.00/0.17 sum#(I2, I3) -> sum#(I2, I3 + 1) [I2 >= I3] 0.00/0.17 R = 0.00/0.17 sif(false, x, y) -> 0 0.00/0.17 sif(true, I0, I1) -> I1 + sum(I0, I1 + 1) 0.00/0.17 sum(I2, I3) -> sif(I2 >= I3, I2, I3) 0.00/0.17 0.00/0.17 The dependency graph for this problem is: 0.00/0.17 0 -> 2, 1 0.00/0.17 1 -> 0.00/0.17 2 -> 2, 1 0.00/0.17 Where: 0.00/0.17 0) sif#(true, I0, I1) -> sum#(I0, I1 + 1) 0.00/0.17 1) sum#(I2, I3) -> sif#(I2 >= I3, I2, I3) 0.00/0.17 2) sum#(I2, I3) -> sum#(I2, I3 + 1) [I2 >= I3] 0.00/0.17 0.00/0.17 We have the following SCCs. 0.00/0.17 { 2 } 0.00/0.17 0.00/0.17 DP problem for innermost termination. 0.00/0.17 P = 0.00/0.17 sum#(I2, I3) -> sum#(I2, I3 + 1) [I2 >= I3] 0.00/0.17 R = 0.00/0.17 sif(false, x, y) -> 0 0.00/0.17 sif(true, I0, I1) -> I1 + sum(I0, I1 + 1) 0.00/0.17 sum(I2, I3) -> sif(I2 >= I3, I2, I3) 0.00/0.17 0.00/0.17 We use the reverse value criterion with the projection function NU: 0.00/0.17 NU[sum#(z1,z2)] = z1 + -1 * z2 0.00/0.17 0.00/0.17 This gives the following inequalities: 0.00/0.17 I2 >= I3 ==> I2 + -1 * I3 > I2 + -1 * (I3 + 1) with I2 + -1 * I3 >= 0 0.00/0.17 0.00/0.17 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.15 EOF