3.90/1.82 YES 3.90/1.83 proof of /export/starexec/sandbox2/benchmark/theBenchmark.itrs 3.90/1.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.90/1.83 3.90/1.83 3.90/1.83 Termination of the given ITRS could be proven: 3.90/1.83 3.90/1.83 (0) ITRS 3.90/1.83 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.90/1.83 (2) IDP 3.90/1.83 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.90/1.83 (4) IDP 3.90/1.83 (5) IDPNonInfProof [SOUND, 117 ms] 3.90/1.83 (6) IDP 3.90/1.83 (7) PisEmptyProof [EQUIVALENT, 0 ms] 3.90/1.83 (8) YES 3.90/1.83 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (0) 3.90/1.83 Obligation: 3.90/1.83 ITRS problem: 3.90/1.83 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.83 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.83 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.83 + ~ Add: (Integer, Integer) -> Integer 3.90/1.83 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.83 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.83 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.83 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.83 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.83 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.83 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.83 >>> 3.90/1.83 3.90/1.83 The TRS R consists of the following rules: 3.90/1.83 cu(TRUE, x) -> cu(x < 100000, x + 1) 3.90/1.83 The set Q consists of the following terms: 3.90/1.83 cu(TRUE, x0) 3.90/1.83 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (1) ITRStoIDPProof (EQUIVALENT) 3.90/1.83 Added dependency pairs 3.90/1.83 ---------------------------------------- 3.90/1.83 3.90/1.83 (2) 3.90/1.83 Obligation: 3.90/1.83 IDP problem: 3.90/1.83 The following function symbols are pre-defined: 3.90/1.83 <<< 3.90/1.83 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.83 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.83 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.83 / ~ Div: (Integer, Integer) -> Integer 3.90/1.83 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.83 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.83 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.83 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.83 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.84 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.84 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.84 + ~ Add: (Integer, Integer) -> Integer 3.90/1.84 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.84 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.84 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.84 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.84 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.84 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.84 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.84 >>> 3.90/1.84 3.90/1.84 3.90/1.84 The following domains are used: 3.90/1.84 Integer 3.90/1.84 3.90/1.84 The ITRS R consists of the following rules: 3.90/1.84 cu(TRUE, x) -> cu(x < 100000, x + 1) 3.90/1.84 3.90/1.84 The integer pair graph contains the following rules and edges: 3.90/1.84 (0): CU(TRUE, x[0]) -> CU(x[0] < 100000, x[0] + 1) 3.90/1.84 3.90/1.84 (0) -> (0), if (x[0] < 100000 & x[0] + 1 ->^* x[0]') 3.90/1.84 3.90/1.84 The set Q consists of the following terms: 3.90/1.84 cu(TRUE, x0) 3.90/1.84 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (3) UsableRulesProof (EQUIVALENT) 3.90/1.84 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (4) 3.90/1.84 Obligation: 3.90/1.84 IDP problem: 3.90/1.84 The following function symbols are pre-defined: 3.90/1.84 <<< 3.90/1.84 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.84 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.84 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.84 / ~ Div: (Integer, Integer) -> Integer 3.90/1.84 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.84 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.84 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.84 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.84 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.84 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.84 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.84 + ~ Add: (Integer, Integer) -> Integer 3.90/1.84 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.84 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.84 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.84 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.84 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.84 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.84 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.84 >>> 3.90/1.84 3.90/1.84 3.90/1.84 The following domains are used: 3.90/1.84 Integer 3.90/1.84 3.90/1.84 R is empty. 3.90/1.84 3.90/1.84 The integer pair graph contains the following rules and edges: 3.90/1.84 (0): CU(TRUE, x[0]) -> CU(x[0] < 100000, x[0] + 1) 3.90/1.84 3.90/1.84 (0) -> (0), if (x[0] < 100000 & x[0] + 1 ->^* x[0]') 3.90/1.84 3.90/1.84 The set Q consists of the following terms: 3.90/1.84 cu(TRUE, x0) 3.90/1.84 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (5) IDPNonInfProof (SOUND) 3.90/1.84 Used the following options for this NonInfProof: 3.90/1.84 3.90/1.84 IDPGPoloSolver: 3.90/1.84 Range: [(-1,2)] 3.90/1.84 IsNat: false 3.90/1.84 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@6012b267 3.90/1.84 Constraint Generator: NonInfConstraintGenerator: 3.90/1.84 PathGenerator: MetricPathGenerator: 3.90/1.84 Max Left Steps: 1 3.90/1.84 Max Right Steps: 1 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 The constraints were generated the following way: 3.90/1.84 3.90/1.84 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.90/1.84 3.90/1.84 Note that final constraints are written in bold face. 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 For Pair CU(TRUE, x) -> CU(<(x, 100000), +(x, 1)) the following chains were created: 3.90/1.84 *We consider the chain CU(TRUE, x[0]) -> CU(<(x[0], 100000), +(x[0], 1)), CU(TRUE, x[0]) -> CU(<(x[0], 100000), +(x[0], 1)), CU(TRUE, x[0]) -> CU(<(x[0], 100000), +(x[0], 1)) which results in the following constraint: 3.90/1.84 3.90/1.84 (1) (<(x[0], 100000)=TRUE & +(x[0], 1)=x[0]1 & <(x[0]1, 100000)=TRUE & +(x[0]1, 1)=x[0]2 ==> CU(TRUE, x[0]1)_>=_NonInfC & CU(TRUE, x[0]1)_>=_CU(<(x[0]1, 100000), +(x[0]1, 1)) & (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=)) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.90/1.84 3.90/1.84 (2) (<(x[0], 100000)=TRUE & <(+(x[0], 1), 100000)=TRUE ==> CU(TRUE, +(x[0], 1))_>=_NonInfC & CU(TRUE, +(x[0], 1))_>=_CU(<(+(x[0], 1), 100000), +(+(x[0], 1), 1)) & (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=)) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.90/1.84 3.90/1.84 (3) ([99999] + [-1]x[0] >= 0 & [99998] + [-1]x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [(-1)bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.90/1.84 3.90/1.84 (4) ([99999] + [-1]x[0] >= 0 & [99998] + [-1]x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [(-1)bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.90/1.84 3.90/1.84 (5) ([99999] + [-1]x[0] >= 0 & [99998] + [-1]x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [(-1)bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.90/1.84 3.90/1.84 (6) ([99999] + x[0] >= 0 & [99998] + x[0] >= 0 & x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 (7) ([99999] + [-1]x[0] >= 0 & [99998] + [-1]x[0] >= 0 & x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [(-1)bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 To summarize, we get the following constraints P__>=_ for the following pairs. 3.90/1.84 3.90/1.84 *CU(TRUE, x) -> CU(<(x, 100000), +(x, 1)) 3.90/1.84 3.90/1.84 *([99999] + x[0] >= 0 & [99998] + x[0] >= 0 & x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 *([99999] + [-1]x[0] >= 0 & [99998] + [-1]x[0] >= 0 & x[0] >= 0 ==> (U^Increasing(CU(<(x[0]1, 100000), +(x[0]1, 1))), >=) & [bni_7 + (-1)Bound*bni_7] + [(-1)bni_7]x[0] >= 0 & [1 + (-1)bso_8] >= 0) 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 3.90/1.84 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.90/1.84 3.90/1.84 Using the following integer polynomial ordering the resulting constraints can be solved 3.90/1.84 3.90/1.84 Polynomial interpretation over integers[POLO]: 3.90/1.84 3.90/1.84 POL(TRUE) = 0 3.90/1.84 POL(FALSE) = 0 3.90/1.84 POL(CU(x_1, x_2)) = [2] + [-1]x_2 3.90/1.84 POL(<(x_1, x_2)) = [-1] 3.90/1.84 POL(100000) = [100000] 3.90/1.84 POL(+(x_1, x_2)) = x_1 + x_2 3.90/1.84 POL(1) = [1] 3.90/1.84 3.90/1.84 3.90/1.84 The following pairs are in P_>: 3.90/1.84 3.90/1.84 3.90/1.84 CU(TRUE, x[0]) -> CU(<(x[0], 100000), +(x[0], 1)) 3.90/1.84 3.90/1.84 3.90/1.84 The following pairs are in P_bound: 3.90/1.84 3.90/1.84 3.90/1.84 CU(TRUE, x[0]) -> CU(<(x[0], 100000), +(x[0], 1)) 3.90/1.84 3.90/1.84 3.90/1.84 The following pairs are in P_>=: 3.90/1.84 3.90/1.84 none 3.90/1.84 3.90/1.84 3.90/1.84 There are no usable rules. 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (6) 3.90/1.84 Obligation: 3.90/1.84 IDP problem: 3.90/1.84 The following function symbols are pre-defined: 3.90/1.84 <<< 3.90/1.84 & ~ Bwand: (Integer, Integer) -> Integer 3.90/1.84 >= ~ Ge: (Integer, Integer) -> Boolean 3.90/1.84 | ~ Bwor: (Integer, Integer) -> Integer 3.90/1.84 / ~ Div: (Integer, Integer) -> Integer 3.90/1.84 != ~ Neq: (Integer, Integer) -> Boolean 3.90/1.84 && ~ Land: (Boolean, Boolean) -> Boolean 3.90/1.84 ! ~ Lnot: (Boolean) -> Boolean 3.90/1.84 = ~ Eq: (Integer, Integer) -> Boolean 3.90/1.84 <= ~ Le: (Integer, Integer) -> Boolean 3.90/1.84 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.90/1.84 % ~ Mod: (Integer, Integer) -> Integer 3.90/1.84 + ~ Add: (Integer, Integer) -> Integer 3.90/1.84 > ~ Gt: (Integer, Integer) -> Boolean 3.90/1.84 -1 ~ UnaryMinus: (Integer) -> Integer 3.90/1.84 < ~ Lt: (Integer, Integer) -> Boolean 3.90/1.84 || ~ Lor: (Boolean, Boolean) -> Boolean 3.90/1.84 - ~ Sub: (Integer, Integer) -> Integer 3.90/1.84 ~ ~ Bwnot: (Integer) -> Integer 3.90/1.84 * ~ Mul: (Integer, Integer) -> Integer 3.90/1.84 >>> 3.90/1.84 3.90/1.84 3.90/1.84 The following domains are used: 3.90/1.84 none 3.90/1.84 3.90/1.84 R is empty. 3.90/1.84 3.90/1.84 The integer pair graph is empty. 3.90/1.84 3.90/1.84 The set Q consists of the following terms: 3.90/1.84 cu(TRUE, x0) 3.90/1.84 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (7) PisEmptyProof (EQUIVALENT) 3.90/1.84 The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.90/1.84 ---------------------------------------- 3.90/1.84 3.90/1.84 (8) 3.90/1.84 YES 3.98/1.86 EOF