0.00/0.19 YES 0.00/0.19 0.00/0.19 DP problem for innermost termination. 0.00/0.19 P = 0.00/0.19 eval_2#(x, y, z) -> eval_1#(x, y, z) [z >= y] 0.00/0.19 eval_2#(I0, I1, I2) -> eval_2#(I0 - 1, I1 - 1, I2) [I1 > I2] 0.00/0.19 eval_1#(I3, I4, I5) -> eval_2#(I3, I4, I5) [I3 = I4 && I3 > I5] 0.00/0.19 R = 0.00/0.19 eval_2(x, y, z) -> eval_1(x, y, z) [z >= y] 0.00/0.19 eval_2(I0, I1, I2) -> eval_2(I0 - 1, I1 - 1, I2) [I1 > I2] 0.00/0.19 eval_1(I3, I4, I5) -> eval_2(I3, I4, I5) [I3 = I4 && I3 > I5] 0.00/0.19 0.00/0.19 The dependency graph for this problem is: 0.00/0.19 0 -> 0.00/0.19 1 -> 0, 1 0.00/0.19 2 -> 1 0.00/0.19 Where: 0.00/0.19 0) eval_2#(x, y, z) -> eval_1#(x, y, z) [z >= y] 0.00/0.19 1) eval_2#(I0, I1, I2) -> eval_2#(I0 - 1, I1 - 1, I2) [I1 > I2] 0.00/0.19 2) eval_1#(I3, I4, I5) -> eval_2#(I3, I4, I5) [I3 = I4 && I3 > I5] 0.00/0.19 0.00/0.19 We have the following SCCs. 0.00/0.19 { 1 } 0.00/0.19 0.00/0.19 DP problem for innermost termination. 0.00/0.19 P = 0.00/0.19 eval_2#(I0, I1, I2) -> eval_2#(I0 - 1, I1 - 1, I2) [I1 > I2] 0.00/0.19 R = 0.00/0.19 eval_2(x, y, z) -> eval_1(x, y, z) [z >= y] 0.00/0.19 eval_2(I0, I1, I2) -> eval_2(I0 - 1, I1 - 1, I2) [I1 > I2] 0.00/0.19 eval_1(I3, I4, I5) -> eval_2(I3, I4, I5) [I3 = I4 && I3 > I5] 0.00/0.19 0.00/0.19 We use the reverse value criterion with the projection function NU: 0.00/0.19 NU[eval_2#(z1,z2,z3)] = z2 + -1 * z3 0.00/0.19 0.00/0.19 This gives the following inequalities: 0.00/0.19 I1 > I2 ==> I1 + -1 * I2 > I1 - 1 + -1 * I2 with I1 + -1 * I2 >= 0 0.00/0.19 0.00/0.19 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.17 EOF