0.00/0.22 YES 0.00/0.22 0.00/0.22 DP problem for innermost termination. 0.00/0.22 P = 0.00/0.22 eval#(x, y) -> eval#(x + 1, y) [y > x && y >= x] 0.00/0.22 eval#(I0, I1) -> eval#(I0 + 1, I1) [I0 > I1 && I1 >= I0] 0.00/0.22 eval#(I2, I3) -> eval#(I2, I3 + 1) [I3 > I2 && I2 > I3] 0.00/0.22 eval#(I4, I5) -> eval#(I4, I5 + 1) [I4 > I5] 0.00/0.22 R = 0.00/0.22 eval(x, y) -> eval(x + 1, y) [y > x && y >= x] 0.00/0.22 eval(I0, I1) -> eval(I0 + 1, I1) [I0 > I1 && I1 >= I0] 0.00/0.22 eval(I2, I3) -> eval(I2, I3 + 1) [I3 > I2 && I2 > I3] 0.00/0.22 eval(I4, I5) -> eval(I4, I5 + 1) [I4 > I5] 0.00/0.22 0.00/0.22 The dependency graph for this problem is: 0.00/0.22 0 -> 0 0.00/0.22 1 -> 0.00/0.22 2 -> 0.00/0.22 3 -> 3 0.00/0.22 Where: 0.00/0.22 0) eval#(x, y) -> eval#(x + 1, y) [y > x && y >= x] 0.00/0.22 1) eval#(I0, I1) -> eval#(I0 + 1, I1) [I0 > I1 && I1 >= I0] 0.00/0.22 2) eval#(I2, I3) -> eval#(I2, I3 + 1) [I3 > I2 && I2 > I3] 0.00/0.22 3) eval#(I4, I5) -> eval#(I4, I5 + 1) [I4 > I5] 0.00/0.22 0.00/0.22 We have the following SCCs. 0.00/0.22 { 0 } 0.00/0.22 { 3 } 0.00/0.22 0.00/0.22 DP problem for innermost termination. 0.00/0.22 P = 0.00/0.22 eval#(I4, I5) -> eval#(I4, I5 + 1) [I4 > I5] 0.00/0.22 R = 0.00/0.22 eval(x, y) -> eval(x + 1, y) [y > x && y >= x] 0.00/0.22 eval(I0, I1) -> eval(I0 + 1, I1) [I0 > I1 && I1 >= I0] 0.00/0.22 eval(I2, I3) -> eval(I2, I3 + 1) [I3 > I2 && I2 > I3] 0.00/0.22 eval(I4, I5) -> eval(I4, I5 + 1) [I4 > I5] 0.00/0.22 0.00/0.22 We use the reverse value criterion with the projection function NU: 0.00/0.22 NU[eval#(z1,z2)] = z1 + -1 * z2 0.00/0.22 0.00/0.22 This gives the following inequalities: 0.00/0.22 I4 > I5 ==> I4 + -1 * I5 > I4 + -1 * (I5 + 1) with I4 + -1 * I5 >= 0 0.00/0.22 0.00/0.22 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.22 0.00/0.22 DP problem for innermost termination. 0.00/0.22 P = 0.00/0.22 eval#(x, y) -> eval#(x + 1, y) [y > x && y >= x] 0.00/0.22 R = 0.00/0.22 eval(x, y) -> eval(x + 1, y) [y > x && y >= x] 0.00/0.22 eval(I0, I1) -> eval(I0 + 1, I1) [I0 > I1 && I1 >= I0] 0.00/0.22 eval(I2, I3) -> eval(I2, I3 + 1) [I3 > I2 && I2 > I3] 0.00/0.22 eval(I4, I5) -> eval(I4, I5 + 1) [I4 > I5] 0.00/0.22 0.00/0.22 We use the reverse value criterion with the projection function NU: 0.00/0.22 NU[eval#(z1,z2)] = z2 + -1 * z1 0.00/0.22 0.00/0.22 This gives the following inequalities: 0.00/0.22 y > x && y >= x ==> y + -1 * x > y + -1 * (x + 1) with y + -1 * x >= 0 0.00/0.22 0.00/0.22 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.20 EOF