4.04/1.89 YES 4.04/1.91 proof of /export/starexec/sandbox2/benchmark/theBenchmark.itrs 4.04/1.91 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.04/1.91 4.04/1.91 4.04/1.91 Termination of the given ITRS could be proven: 4.04/1.91 4.04/1.91 (0) ITRS 4.04/1.91 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 4.04/1.91 (2) IDP 4.04/1.91 (3) UsableRulesProof [EQUIVALENT, 0 ms] 4.04/1.91 (4) IDP 4.04/1.91 (5) IDPNonInfProof [SOUND, 149 ms] 4.04/1.91 (6) AND 4.04/1.91 (7) IDP 4.04/1.91 (8) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.04/1.91 (9) TRUE 4.04/1.91 (10) IDP 4.04/1.91 (11) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.04/1.91 (12) TRUE 4.04/1.91 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (0) 4.04/1.91 Obligation: 4.04/1.91 ITRS problem: 4.04/1.91 4.04/1.91 The following function symbols are pre-defined: 4.04/1.91 <<< 4.04/1.91 & ~ Bwand: (Integer, Integer) -> Integer 4.04/1.91 >= ~ Ge: (Integer, Integer) -> Boolean 4.04/1.91 | ~ Bwor: (Integer, Integer) -> Integer 4.04/1.91 / ~ Div: (Integer, Integer) -> Integer 4.04/1.91 != ~ Neq: (Integer, Integer) -> Boolean 4.04/1.91 && ~ Land: (Boolean, Boolean) -> Boolean 4.04/1.91 ! ~ Lnot: (Boolean) -> Boolean 4.04/1.91 = ~ Eq: (Integer, Integer) -> Boolean 4.04/1.91 <= ~ Le: (Integer, Integer) -> Boolean 4.04/1.91 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.04/1.91 % ~ Mod: (Integer, Integer) -> Integer 4.04/1.91 + ~ Add: (Integer, Integer) -> Integer 4.04/1.91 > ~ Gt: (Integer, Integer) -> Boolean 4.04/1.91 -1 ~ UnaryMinus: (Integer) -> Integer 4.04/1.91 < ~ Lt: (Integer, Integer) -> Boolean 4.04/1.91 || ~ Lor: (Boolean, Boolean) -> Boolean 4.04/1.91 - ~ Sub: (Integer, Integer) -> Integer 4.04/1.91 ~ ~ Bwnot: (Integer) -> Integer 4.04/1.91 * ~ Mul: (Integer, Integer) -> Integer 4.04/1.91 >>> 4.04/1.91 4.04/1.91 The TRS R consists of the following rules: 4.04/1.91 b10(sv14_14, sv23_37, sv24_38) -> b14(sv14_14, sv23_37, sv24_38) 4.04/1.91 Cond_b14(TRUE, sv14_14, sv23_37, sv24_38) -> b15(sv14_14, sv23_37, sv24_38) 4.04/1.91 b15(sv14_14, sv23_37, sv24_38) -> b10(sv14_14, sv23_37 - sv14_14, sv24_38 + 1) 4.04/1.91 b14(sv14_14, sv23_37, sv24_38) -> Cond_b14(sv23_37 >= sv14_14 && (1 < sv14_14 && (TRUE && (0 < sv24_38 && 1 < sv23_37))), sv14_14, sv23_37, sv24_38) 4.04/1.91 The set Q consists of the following terms: 4.04/1.91 b10(x0, x1, x2) 4.04/1.91 Cond_b14(TRUE, x0, x1, x2) 4.04/1.91 b15(x0, x1, x2) 4.04/1.91 b14(x0, x1, x2) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (1) ITRStoIDPProof (EQUIVALENT) 4.04/1.91 Added dependency pairs 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (2) 4.04/1.91 Obligation: 4.04/1.91 IDP problem: 4.04/1.91 The following function symbols are pre-defined: 4.04/1.91 <<< 4.04/1.91 & ~ Bwand: (Integer, Integer) -> Integer 4.04/1.91 >= ~ Ge: (Integer, Integer) -> Boolean 4.04/1.91 | ~ Bwor: (Integer, Integer) -> Integer 4.04/1.91 / ~ Div: (Integer, Integer) -> Integer 4.04/1.91 != ~ Neq: (Integer, Integer) -> Boolean 4.04/1.91 && ~ Land: (Boolean, Boolean) -> Boolean 4.04/1.91 ! ~ Lnot: (Boolean) -> Boolean 4.04/1.91 = ~ Eq: (Integer, Integer) -> Boolean 4.04/1.91 <= ~ Le: (Integer, Integer) -> Boolean 4.04/1.91 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.04/1.91 % ~ Mod: (Integer, Integer) -> Integer 4.04/1.91 + ~ Add: (Integer, Integer) -> Integer 4.04/1.91 > ~ Gt: (Integer, Integer) -> Boolean 4.04/1.91 -1 ~ UnaryMinus: (Integer) -> Integer 4.04/1.91 < ~ Lt: (Integer, Integer) -> Boolean 4.04/1.91 || ~ Lor: (Boolean, Boolean) -> Boolean 4.04/1.91 - ~ Sub: (Integer, Integer) -> Integer 4.04/1.91 ~ ~ Bwnot: (Integer) -> Integer 4.04/1.91 * ~ Mul: (Integer, Integer) -> Integer 4.04/1.91 >>> 4.04/1.91 4.04/1.91 4.04/1.91 The following domains are used: 4.04/1.91 Integer, Boolean 4.04/1.91 4.04/1.91 The ITRS R consists of the following rules: 4.04/1.91 b10(sv14_14, sv23_37, sv24_38) -> b14(sv14_14, sv23_37, sv24_38) 4.04/1.91 Cond_b14(TRUE, sv14_14, sv23_37, sv24_38) -> b15(sv14_14, sv23_37, sv24_38) 4.04/1.91 b15(sv14_14, sv23_37, sv24_38) -> b10(sv14_14, sv23_37 - sv14_14, sv24_38 + 1) 4.04/1.91 b14(sv14_14, sv23_37, sv24_38) -> Cond_b14(sv23_37 >= sv14_14 && (1 < sv14_14 && (TRUE && (0 < sv24_38 && 1 < sv23_37))), sv14_14, sv23_37, sv24_38) 4.04/1.91 4.04/1.91 The integer pair graph contains the following rules and edges: 4.04/1.91 (0): B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) 4.04/1.91 (1): COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]) 4.04/1.91 (2): B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], sv23_37[2] - sv14_14[2], sv24_38[2] + 1) 4.04/1.91 (3): B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(sv23_37[3] >= sv14_14[3] && (1 < sv14_14[3] && (TRUE && (0 < sv24_38[3] && 1 < sv23_37[3]))), sv14_14[3], sv23_37[3], sv24_38[3]) 4.04/1.91 4.04/1.91 (0) -> (3), if (sv14_14[0] ->^* sv14_14[3] & sv23_37[0] ->^* sv23_37[3] & sv24_38[0] ->^* sv24_38[3]) 4.04/1.91 (1) -> (2), if (sv14_14[1] ->^* sv14_14[2] & sv23_37[1] ->^* sv23_37[2] & sv24_38[1] ->^* sv24_38[2]) 4.04/1.91 (2) -> (0), if (sv14_14[2] ->^* sv14_14[0] & sv23_37[2] - sv14_14[2] ->^* sv23_37[0] & sv24_38[2] + 1 ->^* sv24_38[0]) 4.04/1.91 (3) -> (1), if (sv23_37[3] >= sv14_14[3] && (1 < sv14_14[3] && (TRUE && (0 < sv24_38[3] && 1 < sv23_37[3]))) & sv14_14[3] ->^* sv14_14[1] & sv23_37[3] ->^* sv23_37[1] & sv24_38[3] ->^* sv24_38[1]) 4.04/1.91 4.04/1.91 The set Q consists of the following terms: 4.04/1.91 b10(x0, x1, x2) 4.04/1.91 Cond_b14(TRUE, x0, x1, x2) 4.04/1.91 b15(x0, x1, x2) 4.04/1.91 b14(x0, x1, x2) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (3) UsableRulesProof (EQUIVALENT) 4.04/1.91 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (4) 4.04/1.91 Obligation: 4.04/1.91 IDP problem: 4.04/1.91 The following function symbols are pre-defined: 4.04/1.91 <<< 4.04/1.91 & ~ Bwand: (Integer, Integer) -> Integer 4.04/1.91 >= ~ Ge: (Integer, Integer) -> Boolean 4.04/1.91 | ~ Bwor: (Integer, Integer) -> Integer 4.04/1.91 / ~ Div: (Integer, Integer) -> Integer 4.04/1.91 != ~ Neq: (Integer, Integer) -> Boolean 4.04/1.91 && ~ Land: (Boolean, Boolean) -> Boolean 4.04/1.91 ! ~ Lnot: (Boolean) -> Boolean 4.04/1.91 = ~ Eq: (Integer, Integer) -> Boolean 4.04/1.91 <= ~ Le: (Integer, Integer) -> Boolean 4.04/1.91 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.04/1.91 % ~ Mod: (Integer, Integer) -> Integer 4.04/1.91 + ~ Add: (Integer, Integer) -> Integer 4.04/1.91 > ~ Gt: (Integer, Integer) -> Boolean 4.04/1.91 -1 ~ UnaryMinus: (Integer) -> Integer 4.04/1.91 < ~ Lt: (Integer, Integer) -> Boolean 4.04/1.91 || ~ Lor: (Boolean, Boolean) -> Boolean 4.04/1.91 - ~ Sub: (Integer, Integer) -> Integer 4.04/1.91 ~ ~ Bwnot: (Integer) -> Integer 4.04/1.91 * ~ Mul: (Integer, Integer) -> Integer 4.04/1.91 >>> 4.04/1.91 4.04/1.91 4.04/1.91 The following domains are used: 4.04/1.91 Integer, Boolean 4.04/1.91 4.04/1.91 R is empty. 4.04/1.91 4.04/1.91 The integer pair graph contains the following rules and edges: 4.04/1.91 (0): B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) 4.04/1.91 (1): COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]) 4.04/1.91 (2): B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], sv23_37[2] - sv14_14[2], sv24_38[2] + 1) 4.04/1.91 (3): B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(sv23_37[3] >= sv14_14[3] && (1 < sv14_14[3] && (TRUE && (0 < sv24_38[3] && 1 < sv23_37[3]))), sv14_14[3], sv23_37[3], sv24_38[3]) 4.04/1.91 4.04/1.91 (0) -> (3), if (sv14_14[0] ->^* sv14_14[3] & sv23_37[0] ->^* sv23_37[3] & sv24_38[0] ->^* sv24_38[3]) 4.04/1.91 (1) -> (2), if (sv14_14[1] ->^* sv14_14[2] & sv23_37[1] ->^* sv23_37[2] & sv24_38[1] ->^* sv24_38[2]) 4.04/1.91 (2) -> (0), if (sv14_14[2] ->^* sv14_14[0] & sv23_37[2] - sv14_14[2] ->^* sv23_37[0] & sv24_38[2] + 1 ->^* sv24_38[0]) 4.04/1.91 (3) -> (1), if (sv23_37[3] >= sv14_14[3] && (1 < sv14_14[3] && (TRUE && (0 < sv24_38[3] && 1 < sv23_37[3]))) & sv14_14[3] ->^* sv14_14[1] & sv23_37[3] ->^* sv23_37[1] & sv24_38[3] ->^* sv24_38[1]) 4.04/1.91 4.04/1.91 The set Q consists of the following terms: 4.04/1.91 b10(x0, x1, x2) 4.04/1.91 Cond_b14(TRUE, x0, x1, x2) 4.04/1.91 b15(x0, x1, x2) 4.04/1.91 b14(x0, x1, x2) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (5) IDPNonInfProof (SOUND) 4.04/1.91 Used the following options for this NonInfProof: 4.04/1.91 4.04/1.91 IDPGPoloSolver: 4.04/1.91 Range: [(-1,2)] 4.04/1.91 IsNat: false 4.04/1.91 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@7881af86 4.04/1.91 Constraint Generator: NonInfConstraintGenerator: 4.04/1.91 PathGenerator: MetricPathGenerator: 4.04/1.91 Max Left Steps: 1 4.04/1.91 Max Right Steps: 1 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 The constraints were generated the following way: 4.04/1.91 4.04/1.91 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 4.04/1.91 4.04/1.91 Note that final constraints are written in bold face. 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 For Pair B10(sv14_14, sv23_37, sv24_38) -> B14(sv14_14, sv23_37, sv24_38) the following chains were created: 4.04/1.91 *We consider the chain B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]), B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]) which results in the following constraint: 4.04/1.91 4.04/1.91 (1) (sv14_14[0]=sv14_14[3] & sv23_37[0]=sv23_37[3] & sv24_38[0]=sv24_38[3] ==> B10(sv14_14[0], sv23_37[0], sv24_38[0])_>=_NonInfC & B10(sv14_14[0], sv23_37[0], sv24_38[0])_>=_B14(sv14_14[0], sv23_37[0], sv24_38[0]) & (U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (1) using rule (IV) which results in the following new constraint: 4.04/1.91 4.04/1.91 (2) (B10(sv14_14[0], sv23_37[0], sv24_38[0])_>=_NonInfC & B10(sv14_14[0], sv23_37[0], sv24_38[0])_>=_B14(sv14_14[0], sv23_37[0], sv24_38[0]) & (U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.04/1.91 4.04/1.91 (3) ((U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=) & [bni_23] = 0 & [(-1)bso_24] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.04/1.91 4.04/1.91 (4) ((U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=) & [bni_23] = 0 & [(-1)bso_24] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.04/1.91 4.04/1.91 (5) ((U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=) & [bni_23] = 0 & [(-1)bso_24] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 For Pair COND_B14(TRUE, sv14_14, sv23_37, sv24_38) -> B15(sv14_14, sv23_37, sv24_38) the following chains were created: 4.04/1.91 *We consider the chain COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]), B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1)) which results in the following constraint: 4.04/1.91 4.04/1.91 (1) (sv14_14[1]=sv14_14[2] & sv23_37[1]=sv23_37[2] & sv24_38[1]=sv24_38[2] ==> COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1])_>=_NonInfC & COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1])_>=_B15(sv14_14[1], sv23_37[1], sv24_38[1]) & (U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (1) using rule (IV) which results in the following new constraint: 4.04/1.91 4.04/1.91 (2) (COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1])_>=_NonInfC & COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1])_>=_B15(sv14_14[1], sv23_37[1], sv24_38[1]) & (U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.04/1.91 4.04/1.91 (3) ((U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=) & [bni_25] = 0 & [1 + (-1)bso_26] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.04/1.91 4.04/1.91 (4) ((U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=) & [bni_25] = 0 & [1 + (-1)bso_26] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.04/1.91 4.04/1.91 (5) ((U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=) & [bni_25] = 0 & [1 + (-1)bso_26] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 For Pair B15(sv14_14, sv23_37, sv24_38) -> B10(sv14_14, -(sv23_37, sv14_14), +(sv24_38, 1)) the following chains were created: 4.04/1.91 *We consider the chain COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]), B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1)), B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) which results in the following constraint: 4.04/1.91 4.04/1.91 (1) (sv14_14[1]=sv14_14[2] & sv23_37[1]=sv23_37[2] & sv24_38[1]=sv24_38[2] & sv14_14[2]=sv14_14[0] & -(sv23_37[2], sv14_14[2])=sv23_37[0] & +(sv24_38[2], 1)=sv24_38[0] ==> B15(sv14_14[2], sv23_37[2], sv24_38[2])_>=_NonInfC & B15(sv14_14[2], sv23_37[2], sv24_38[2])_>=_B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1)) & (U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 4.04/1.91 4.04/1.91 (2) (B15(sv14_14[1], sv23_37[1], sv24_38[1])_>=_NonInfC & B15(sv14_14[1], sv23_37[1], sv24_38[1])_>=_B10(sv14_14[1], -(sv23_37[1], sv14_14[1]), +(sv24_38[1], 1)) & (U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.04/1.91 4.04/1.91 (3) ((U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=) & [bni_27] = 0 & [(-1)bso_28] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.04/1.91 4.04/1.91 (4) ((U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=) & [bni_27] = 0 & [(-1)bso_28] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.04/1.91 4.04/1.91 (5) ((U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=) & [bni_27] = 0 & [(-1)bso_28] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.04/1.91 4.04/1.91 (6) ((U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=) & [bni_27] = 0 & 0 = 0 & [(-1)bso_28] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 For Pair B14(sv14_14, sv23_37, sv24_38) -> COND_B14(&&(>=(sv23_37, sv14_14), &&(<(1, sv14_14), &&(TRUE, &&(<(0, sv24_38), <(1, sv23_37))))), sv14_14, sv23_37, sv24_38) the following chains were created: 4.04/1.91 *We consider the chain B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]), COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]) which results in the following constraint: 4.04/1.91 4.04/1.91 (1) (&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3])))))=TRUE & sv14_14[3]=sv14_14[1] & sv23_37[3]=sv23_37[1] & sv24_38[3]=sv24_38[1] ==> B14(sv14_14[3], sv23_37[3], sv24_38[3])_>=_NonInfC & B14(sv14_14[3], sv23_37[3], sv24_38[3])_>=_COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]) & (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (1) using rules (IV), (DELETE_TRIVIAL_REDUCESTO), (IDP_BOOLEAN) which results in the following new constraint: 4.04/1.91 4.04/1.91 (2) (>=(sv23_37[3], sv14_14[3])=TRUE & <(1, sv14_14[3])=TRUE & <(0, sv24_38[3])=TRUE & <(1, sv23_37[3])=TRUE ==> B14(sv14_14[3], sv23_37[3], sv24_38[3])_>=_NonInfC & B14(sv14_14[3], sv23_37[3], sv24_38[3])_>=_COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]) & (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=)) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.04/1.91 4.04/1.91 (3) (sv23_37[3] + [-1]sv14_14[3] >= 0 & sv14_14[3] + [-2] >= 0 & sv24_38[3] + [-1] >= 0 & sv23_37[3] + [-2] >= 0 ==> (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]sv23_37[3] >= 0 & [-2 + (-1)bso_30] + sv14_14[3] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.04/1.91 4.04/1.91 (4) (sv23_37[3] + [-1]sv14_14[3] >= 0 & sv14_14[3] + [-2] >= 0 & sv24_38[3] + [-1] >= 0 & sv23_37[3] + [-2] >= 0 ==> (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]sv23_37[3] >= 0 & [-2 + (-1)bso_30] + sv14_14[3] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.04/1.91 4.04/1.91 (5) (sv23_37[3] + [-1]sv14_14[3] >= 0 & sv14_14[3] + [-2] >= 0 & sv24_38[3] + [-1] >= 0 & sv23_37[3] + [-2] >= 0 ==> (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]sv23_37[3] >= 0 & [-2 + (-1)bso_30] + sv14_14[3] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 To summarize, we get the following constraints P__>=_ for the following pairs. 4.04/1.91 4.04/1.91 *B10(sv14_14, sv23_37, sv24_38) -> B14(sv14_14, sv23_37, sv24_38) 4.04/1.91 4.04/1.91 *((U^Increasing(B14(sv14_14[0], sv23_37[0], sv24_38[0])), >=) & [bni_23] = 0 & [(-1)bso_24] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 *COND_B14(TRUE, sv14_14, sv23_37, sv24_38) -> B15(sv14_14, sv23_37, sv24_38) 4.04/1.91 4.04/1.91 *((U^Increasing(B15(sv14_14[1], sv23_37[1], sv24_38[1])), >=) & [bni_25] = 0 & [1 + (-1)bso_26] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 *B15(sv14_14, sv23_37, sv24_38) -> B10(sv14_14, -(sv23_37, sv14_14), +(sv24_38, 1)) 4.04/1.91 4.04/1.91 *((U^Increasing(B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1))), >=) & [bni_27] = 0 & 0 = 0 & [(-1)bso_28] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 *B14(sv14_14, sv23_37, sv24_38) -> COND_B14(&&(>=(sv23_37, sv14_14), &&(<(1, sv14_14), &&(TRUE, &&(<(0, sv24_38), <(1, sv23_37))))), sv14_14, sv23_37, sv24_38) 4.04/1.91 4.04/1.91 *(sv23_37[3] + [-1]sv14_14[3] >= 0 & sv14_14[3] + [-2] >= 0 & sv24_38[3] + [-1] >= 0 & sv23_37[3] + [-2] >= 0 ==> (U^Increasing(COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3])), >=) & [(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]sv23_37[3] >= 0 & [-2 + (-1)bso_30] + sv14_14[3] >= 0) 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 4.04/1.91 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 4.04/1.91 4.04/1.91 Using the following integer polynomial ordering the resulting constraints can be solved 4.04/1.91 4.04/1.91 Polynomial interpretation over integers[POLO]: 4.04/1.91 4.04/1.91 POL(TRUE) = 0 4.04/1.91 POL(FALSE) = [2] 4.04/1.91 POL(B10(x_1, x_2, x_3)) = [-1] + x_2 4.04/1.91 POL(B14(x_1, x_2, x_3)) = [-1] + x_2 4.04/1.91 POL(COND_B14(x_1, x_2, x_3, x_4)) = x_3 + [-1]x_2 + [-1]x_1 4.04/1.91 POL(B15(x_1, x_2, x_3)) = [-1] + x_2 + [-1]x_1 4.04/1.91 POL(-(x_1, x_2)) = x_1 + [-1]x_2 4.04/1.91 POL(+(x_1, x_2)) = x_1 + x_2 4.04/1.91 POL(1) = [1] 4.04/1.91 POL(&&(x_1, x_2)) = [-1] 4.04/1.91 POL(>=(x_1, x_2)) = [-1] 4.04/1.91 POL(<(x_1, x_2)) = [-1] 4.04/1.91 POL(0) = 0 4.04/1.91 4.04/1.91 4.04/1.91 The following pairs are in P_>: 4.04/1.91 4.04/1.91 4.04/1.91 COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]) 4.04/1.91 4.04/1.91 4.04/1.91 The following pairs are in P_bound: 4.04/1.91 4.04/1.91 4.04/1.91 B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]) 4.04/1.91 4.04/1.91 4.04/1.91 The following pairs are in P_>=: 4.04/1.91 4.04/1.91 4.04/1.91 B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) 4.04/1.91 B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], -(sv23_37[2], sv14_14[2]), +(sv24_38[2], 1)) 4.04/1.91 B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(&&(>=(sv23_37[3], sv14_14[3]), &&(<(1, sv14_14[3]), &&(TRUE, &&(<(0, sv24_38[3]), <(1, sv23_37[3]))))), sv14_14[3], sv23_37[3], sv24_38[3]) 4.04/1.91 4.04/1.91 4.04/1.91 At least the following rules have been oriented under context sensitive arithmetic replacement: 4.04/1.91 4.04/1.91 TRUE^1 -> &&(TRUE, TRUE)^1 4.04/1.91 FALSE^1 -> &&(TRUE, FALSE)^1 4.04/1.91 FALSE^1 -> &&(FALSE, TRUE)^1 4.04/1.91 FALSE^1 -> &&(FALSE, FALSE)^1 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (6) 4.04/1.91 Complex Obligation (AND) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (7) 4.04/1.91 Obligation: 4.04/1.91 IDP problem: 4.04/1.91 The following function symbols are pre-defined: 4.04/1.91 <<< 4.04/1.91 & ~ Bwand: (Integer, Integer) -> Integer 4.04/1.91 >= ~ Ge: (Integer, Integer) -> Boolean 4.04/1.91 | ~ Bwor: (Integer, Integer) -> Integer 4.04/1.91 / ~ Div: (Integer, Integer) -> Integer 4.04/1.91 != ~ Neq: (Integer, Integer) -> Boolean 4.04/1.91 && ~ Land: (Boolean, Boolean) -> Boolean 4.04/1.91 ! ~ Lnot: (Boolean) -> Boolean 4.04/1.91 = ~ Eq: (Integer, Integer) -> Boolean 4.04/1.91 <= ~ Le: (Integer, Integer) -> Boolean 4.04/1.91 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.04/1.91 % ~ Mod: (Integer, Integer) -> Integer 4.04/1.91 + ~ Add: (Integer, Integer) -> Integer 4.04/1.91 > ~ Gt: (Integer, Integer) -> Boolean 4.04/1.91 -1 ~ UnaryMinus: (Integer) -> Integer 4.04/1.91 < ~ Lt: (Integer, Integer) -> Boolean 4.04/1.91 || ~ Lor: (Boolean, Boolean) -> Boolean 4.04/1.91 - ~ Sub: (Integer, Integer) -> Integer 4.04/1.91 ~ ~ Bwnot: (Integer) -> Integer 4.04/1.91 * ~ Mul: (Integer, Integer) -> Integer 4.04/1.91 >>> 4.04/1.91 4.04/1.91 4.04/1.91 The following domains are used: 4.04/1.91 Integer, Boolean 4.04/1.91 4.04/1.91 R is empty. 4.04/1.91 4.04/1.91 The integer pair graph contains the following rules and edges: 4.04/1.91 (0): B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) 4.04/1.91 (2): B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], sv23_37[2] - sv14_14[2], sv24_38[2] + 1) 4.04/1.91 (3): B14(sv14_14[3], sv23_37[3], sv24_38[3]) -> COND_B14(sv23_37[3] >= sv14_14[3] && (1 < sv14_14[3] && (TRUE && (0 < sv24_38[3] && 1 < sv23_37[3]))), sv14_14[3], sv23_37[3], sv24_38[3]) 4.04/1.91 4.04/1.91 (2) -> (0), if (sv14_14[2] ->^* sv14_14[0] & sv23_37[2] - sv14_14[2] ->^* sv23_37[0] & sv24_38[2] + 1 ->^* sv24_38[0]) 4.04/1.91 (0) -> (3), if (sv14_14[0] ->^* sv14_14[3] & sv23_37[0] ->^* sv23_37[3] & sv24_38[0] ->^* sv24_38[3]) 4.04/1.91 4.04/1.91 The set Q consists of the following terms: 4.04/1.91 b10(x0, x1, x2) 4.04/1.91 Cond_b14(TRUE, x0, x1, x2) 4.04/1.91 b15(x0, x1, x2) 4.04/1.91 b14(x0, x1, x2) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (8) IDependencyGraphProof (EQUIVALENT) 4.04/1.91 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (9) 4.04/1.91 TRUE 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (10) 4.04/1.91 Obligation: 4.04/1.91 IDP problem: 4.04/1.91 The following function symbols are pre-defined: 4.04/1.91 <<< 4.04/1.91 & ~ Bwand: (Integer, Integer) -> Integer 4.04/1.91 >= ~ Ge: (Integer, Integer) -> Boolean 4.04/1.91 | ~ Bwor: (Integer, Integer) -> Integer 4.04/1.91 / ~ Div: (Integer, Integer) -> Integer 4.04/1.91 != ~ Neq: (Integer, Integer) -> Boolean 4.04/1.91 && ~ Land: (Boolean, Boolean) -> Boolean 4.04/1.91 ! ~ Lnot: (Boolean) -> Boolean 4.04/1.91 = ~ Eq: (Integer, Integer) -> Boolean 4.04/1.91 <= ~ Le: (Integer, Integer) -> Boolean 4.04/1.91 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.04/1.91 % ~ Mod: (Integer, Integer) -> Integer 4.04/1.91 + ~ Add: (Integer, Integer) -> Integer 4.04/1.91 > ~ Gt: (Integer, Integer) -> Boolean 4.04/1.91 -1 ~ UnaryMinus: (Integer) -> Integer 4.04/1.91 < ~ Lt: (Integer, Integer) -> Boolean 4.04/1.91 || ~ Lor: (Boolean, Boolean) -> Boolean 4.04/1.91 - ~ Sub: (Integer, Integer) -> Integer 4.04/1.91 ~ ~ Bwnot: (Integer) -> Integer 4.04/1.91 * ~ Mul: (Integer, Integer) -> Integer 4.04/1.91 >>> 4.04/1.91 4.04/1.91 4.04/1.91 The following domains are used: 4.04/1.91 Integer 4.04/1.91 4.04/1.91 R is empty. 4.04/1.91 4.04/1.91 The integer pair graph contains the following rules and edges: 4.04/1.91 (0): B10(sv14_14[0], sv23_37[0], sv24_38[0]) -> B14(sv14_14[0], sv23_37[0], sv24_38[0]) 4.04/1.91 (1): COND_B14(TRUE, sv14_14[1], sv23_37[1], sv24_38[1]) -> B15(sv14_14[1], sv23_37[1], sv24_38[1]) 4.04/1.91 (2): B15(sv14_14[2], sv23_37[2], sv24_38[2]) -> B10(sv14_14[2], sv23_37[2] - sv14_14[2], sv24_38[2] + 1) 4.04/1.91 4.04/1.91 (2) -> (0), if (sv14_14[2] ->^* sv14_14[0] & sv23_37[2] - sv14_14[2] ->^* sv23_37[0] & sv24_38[2] + 1 ->^* sv24_38[0]) 4.04/1.91 (1) -> (2), if (sv14_14[1] ->^* sv14_14[2] & sv23_37[1] ->^* sv23_37[2] & sv24_38[1] ->^* sv24_38[2]) 4.04/1.91 4.04/1.91 The set Q consists of the following terms: 4.04/1.91 b10(x0, x1, x2) 4.04/1.91 Cond_b14(TRUE, x0, x1, x2) 4.04/1.91 b15(x0, x1, x2) 4.04/1.91 b14(x0, x1, x2) 4.04/1.91 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (11) IDependencyGraphProof (EQUIVALENT) 4.04/1.91 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. 4.04/1.91 ---------------------------------------- 4.04/1.91 4.04/1.91 (12) 4.04/1.91 TRUE 4.04/1.92 EOF