3.59/1.78 YES 3.59/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 3.59/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.59/1.79 3.59/1.79 3.59/1.79 Termination of the given ITRS could be proven: 3.59/1.79 3.59/1.79 (0) ITRS 3.59/1.79 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.59/1.79 (2) IDP 3.59/1.79 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.59/1.79 (4) IDP 3.59/1.79 (5) IDPNonInfProof [SOUND, 105 ms] 3.59/1.79 (6) IDP 3.59/1.79 (7) PisEmptyProof [EQUIVALENT, 0 ms] 3.59/1.79 (8) YES 3.59/1.79 3.59/1.79 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (0) 3.59/1.79 Obligation: 3.59/1.79 ITRS problem: 3.59/1.79 3.59/1.79 The following function symbols are pre-defined: 3.59/1.79 <<< 3.59/1.79 & ~ Bwand: (Integer, Integer) -> Integer 3.59/1.79 >= ~ Ge: (Integer, Integer) -> Boolean 3.59/1.79 | ~ Bwor: (Integer, Integer) -> Integer 3.59/1.79 / ~ Div: (Integer, Integer) -> Integer 3.59/1.79 != ~ Neq: (Integer, Integer) -> Boolean 3.59/1.79 && ~ Land: (Boolean, Boolean) -> Boolean 3.59/1.79 ! ~ Lnot: (Boolean) -> Boolean 3.59/1.79 = ~ Eq: (Integer, Integer) -> Boolean 3.59/1.79 <= ~ Le: (Integer, Integer) -> Boolean 3.59/1.79 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.59/1.79 % ~ Mod: (Integer, Integer) -> Integer 3.59/1.79 > ~ Gt: (Integer, Integer) -> Boolean 3.59/1.79 + ~ Add: (Integer, Integer) -> Integer 3.59/1.79 -1 ~ UnaryMinus: (Integer) -> Integer 3.59/1.79 < ~ Lt: (Integer, Integer) -> Boolean 3.59/1.79 || ~ Lor: (Boolean, Boolean) -> Boolean 3.59/1.79 - ~ Sub: (Integer, Integer) -> Integer 3.59/1.79 ~ ~ Bwnot: (Integer) -> Integer 3.59/1.79 * ~ Mul: (Integer, Integer) -> Integer 3.59/1.79 >>> 3.59/1.79 3.59/1.79 The TRS R consists of the following rules: 3.59/1.79 cd(TRUE, x) -> cd(x > 0, x - 1) 3.59/1.79 The set Q consists of the following terms: 3.59/1.79 cd(TRUE, x0) 3.59/1.79 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (1) ITRStoIDPProof (EQUIVALENT) 3.59/1.79 Added dependency pairs 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (2) 3.59/1.79 Obligation: 3.59/1.79 IDP problem: 3.59/1.79 The following function symbols are pre-defined: 3.59/1.79 <<< 3.59/1.79 & ~ Bwand: (Integer, Integer) -> Integer 3.59/1.79 >= ~ Ge: (Integer, Integer) -> Boolean 3.59/1.79 | ~ Bwor: (Integer, Integer) -> Integer 3.59/1.79 / ~ Div: (Integer, Integer) -> Integer 3.59/1.79 != ~ Neq: (Integer, Integer) -> Boolean 3.59/1.79 && ~ Land: (Boolean, Boolean) -> Boolean 3.59/1.79 ! ~ Lnot: (Boolean) -> Boolean 3.59/1.79 = ~ Eq: (Integer, Integer) -> Boolean 3.59/1.79 <= ~ Le: (Integer, Integer) -> Boolean 3.59/1.79 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.59/1.79 % ~ Mod: (Integer, Integer) -> Integer 3.59/1.79 > ~ Gt: (Integer, Integer) -> Boolean 3.59/1.79 + ~ Add: (Integer, Integer) -> Integer 3.59/1.79 -1 ~ UnaryMinus: (Integer) -> Integer 3.59/1.79 < ~ Lt: (Integer, Integer) -> Boolean 3.59/1.79 || ~ Lor: (Boolean, Boolean) -> Boolean 3.59/1.79 - ~ Sub: (Integer, Integer) -> Integer 3.59/1.79 ~ ~ Bwnot: (Integer) -> Integer 3.59/1.79 * ~ Mul: (Integer, Integer) -> Integer 3.59/1.79 >>> 3.59/1.79 3.59/1.79 3.59/1.79 The following domains are used: 3.59/1.79 Integer 3.59/1.79 3.59/1.79 The ITRS R consists of the following rules: 3.59/1.79 cd(TRUE, x) -> cd(x > 0, x - 1) 3.59/1.79 3.59/1.79 The integer pair graph contains the following rules and edges: 3.59/1.79 (0): CD(TRUE, x[0]) -> CD(x[0] > 0, x[0] - 1) 3.59/1.79 3.59/1.79 (0) -> (0), if (x[0] > 0 & x[0] - 1 ->^* x[0]') 3.59/1.79 3.59/1.79 The set Q consists of the following terms: 3.59/1.79 cd(TRUE, x0) 3.59/1.79 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (3) UsableRulesProof (EQUIVALENT) 3.59/1.79 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (4) 3.59/1.79 Obligation: 3.59/1.79 IDP problem: 3.59/1.79 The following function symbols are pre-defined: 3.59/1.79 <<< 3.59/1.79 & ~ Bwand: (Integer, Integer) -> Integer 3.59/1.79 >= ~ Ge: (Integer, Integer) -> Boolean 3.59/1.79 | ~ Bwor: (Integer, Integer) -> Integer 3.59/1.79 / ~ Div: (Integer, Integer) -> Integer 3.59/1.79 != ~ Neq: (Integer, Integer) -> Boolean 3.59/1.79 && ~ Land: (Boolean, Boolean) -> Boolean 3.59/1.79 ! ~ Lnot: (Boolean) -> Boolean 3.59/1.79 = ~ Eq: (Integer, Integer) -> Boolean 3.59/1.79 <= ~ Le: (Integer, Integer) -> Boolean 3.59/1.79 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.59/1.79 % ~ Mod: (Integer, Integer) -> Integer 3.59/1.79 > ~ Gt: (Integer, Integer) -> Boolean 3.59/1.79 + ~ Add: (Integer, Integer) -> Integer 3.59/1.79 -1 ~ UnaryMinus: (Integer) -> Integer 3.59/1.79 < ~ Lt: (Integer, Integer) -> Boolean 3.59/1.79 || ~ Lor: (Boolean, Boolean) -> Boolean 3.59/1.79 - ~ Sub: (Integer, Integer) -> Integer 3.59/1.79 ~ ~ Bwnot: (Integer) -> Integer 3.59/1.79 * ~ Mul: (Integer, Integer) -> Integer 3.59/1.79 >>> 3.59/1.79 3.59/1.79 3.59/1.79 The following domains are used: 3.59/1.79 Integer 3.59/1.79 3.59/1.79 R is empty. 3.59/1.79 3.59/1.79 The integer pair graph contains the following rules and edges: 3.59/1.79 (0): CD(TRUE, x[0]) -> CD(x[0] > 0, x[0] - 1) 3.59/1.79 3.59/1.79 (0) -> (0), if (x[0] > 0 & x[0] - 1 ->^* x[0]') 3.59/1.79 3.59/1.79 The set Q consists of the following terms: 3.59/1.79 cd(TRUE, x0) 3.59/1.79 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (5) IDPNonInfProof (SOUND) 3.59/1.79 Used the following options for this NonInfProof: 3.59/1.79 3.59/1.79 IDPGPoloSolver: 3.59/1.79 Range: [(-1,2)] 3.59/1.79 IsNat: false 3.59/1.79 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@10a10ffe 3.59/1.79 Constraint Generator: NonInfConstraintGenerator: 3.59/1.79 PathGenerator: MetricPathGenerator: 3.59/1.79 Max Left Steps: 1 3.59/1.79 Max Right Steps: 1 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 The constraints were generated the following way: 3.59/1.79 3.59/1.79 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.59/1.79 3.59/1.79 Note that final constraints are written in bold face. 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 For Pair CD(TRUE, x) -> CD(>(x, 0), -(x, 1)) the following chains were created: 3.59/1.79 *We consider the chain CD(TRUE, x[0]) -> CD(>(x[0], 0), -(x[0], 1)), CD(TRUE, x[0]) -> CD(>(x[0], 0), -(x[0], 1)), CD(TRUE, x[0]) -> CD(>(x[0], 0), -(x[0], 1)) which results in the following constraint: 3.59/1.79 3.59/1.79 (1) (>(x[0], 0)=TRUE & -(x[0], 1)=x[0]1 & >(x[0]1, 0)=TRUE & -(x[0]1, 1)=x[0]2 ==> CD(TRUE, x[0]1)_>=_NonInfC & CD(TRUE, x[0]1)_>=_CD(>(x[0]1, 0), -(x[0]1, 1)) & (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=)) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.59/1.79 3.59/1.79 (2) (>(x[0], 0)=TRUE & >(-(x[0], 1), 0)=TRUE ==> CD(TRUE, -(x[0], 1))_>=_NonInfC & CD(TRUE, -(x[0], 1))_>=_CD(>(-(x[0], 1), 0), -(-(x[0], 1), 1)) & (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=)) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.59/1.79 3.59/1.79 (3) (x[0] + [-1] >= 0 & x[0] + [-2] >= 0 ==> (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=) & [(-1)Bound*bni_7] + [(2)bni_7]x[0] >= 0 & [2 + (-1)bso_8] >= 0) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.59/1.79 3.59/1.79 (4) (x[0] + [-1] >= 0 & x[0] + [-2] >= 0 ==> (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=) & [(-1)Bound*bni_7] + [(2)bni_7]x[0] >= 0 & [2 + (-1)bso_8] >= 0) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.59/1.79 3.59/1.79 (5) (x[0] + [-1] >= 0 & x[0] + [-2] >= 0 ==> (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=) & [(-1)Bound*bni_7] + [(2)bni_7]x[0] >= 0 & [2 + (-1)bso_8] >= 0) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 To summarize, we get the following constraints P__>=_ for the following pairs. 3.59/1.79 3.59/1.79 *CD(TRUE, x) -> CD(>(x, 0), -(x, 1)) 3.59/1.79 3.59/1.79 *(x[0] + [-1] >= 0 & x[0] + [-2] >= 0 ==> (U^Increasing(CD(>(x[0]1, 0), -(x[0]1, 1))), >=) & [(-1)Bound*bni_7] + [(2)bni_7]x[0] >= 0 & [2 + (-1)bso_8] >= 0) 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 3.59/1.79 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.59/1.79 3.59/1.79 Using the following integer polynomial ordering the resulting constraints can be solved 3.59/1.79 3.59/1.79 Polynomial interpretation over integers[POLO]: 3.59/1.79 3.59/1.79 POL(TRUE) = [1] 3.59/1.79 POL(FALSE) = 0 3.59/1.79 POL(CD(x_1, x_2)) = [2] + [2]x_2 3.59/1.79 POL(>(x_1, x_2)) = [1] 3.59/1.79 POL(0) = 0 3.59/1.79 POL(-(x_1, x_2)) = x_1 + [-1]x_2 3.59/1.79 POL(1) = [1] 3.59/1.79 3.59/1.79 3.59/1.79 The following pairs are in P_>: 3.59/1.79 3.59/1.79 3.59/1.79 CD(TRUE, x[0]) -> CD(>(x[0], 0), -(x[0], 1)) 3.59/1.79 3.59/1.79 3.59/1.79 The following pairs are in P_bound: 3.59/1.79 3.59/1.79 3.59/1.79 CD(TRUE, x[0]) -> CD(>(x[0], 0), -(x[0], 1)) 3.59/1.79 3.59/1.79 3.59/1.79 The following pairs are in P_>=: 3.59/1.79 3.59/1.79 none 3.59/1.79 3.59/1.79 3.59/1.79 There are no usable rules. 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (6) 3.59/1.79 Obligation: 3.59/1.79 IDP problem: 3.59/1.79 The following function symbols are pre-defined: 3.59/1.79 <<< 3.59/1.79 & ~ Bwand: (Integer, Integer) -> Integer 3.59/1.79 >= ~ Ge: (Integer, Integer) -> Boolean 3.59/1.79 | ~ Bwor: (Integer, Integer) -> Integer 3.59/1.79 / ~ Div: (Integer, Integer) -> Integer 3.59/1.79 != ~ Neq: (Integer, Integer) -> Boolean 3.59/1.79 && ~ Land: (Boolean, Boolean) -> Boolean 3.59/1.79 ! ~ Lnot: (Boolean) -> Boolean 3.59/1.79 = ~ Eq: (Integer, Integer) -> Boolean 3.59/1.79 <= ~ Le: (Integer, Integer) -> Boolean 3.59/1.79 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.59/1.79 % ~ Mod: (Integer, Integer) -> Integer 3.59/1.79 > ~ Gt: (Integer, Integer) -> Boolean 3.59/1.79 + ~ Add: (Integer, Integer) -> Integer 3.59/1.79 -1 ~ UnaryMinus: (Integer) -> Integer 3.59/1.79 < ~ Lt: (Integer, Integer) -> Boolean 3.59/1.79 || ~ Lor: (Boolean, Boolean) -> Boolean 3.59/1.79 - ~ Sub: (Integer, Integer) -> Integer 3.59/1.79 ~ ~ Bwnot: (Integer) -> Integer 3.59/1.79 * ~ Mul: (Integer, Integer) -> Integer 3.59/1.79 >>> 3.59/1.79 3.59/1.79 3.59/1.79 The following domains are used: 3.59/1.79 none 3.59/1.79 3.59/1.79 R is empty. 3.59/1.79 3.59/1.79 The integer pair graph is empty. 3.59/1.79 3.59/1.79 The set Q consists of the following terms: 3.59/1.79 cd(TRUE, x0) 3.59/1.79 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (7) PisEmptyProof (EQUIVALENT) 3.59/1.79 The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.59/1.79 ---------------------------------------- 3.59/1.79 3.59/1.79 (8) 3.59/1.79 YES 3.59/1.80 EOF