0.00/0.11 YES 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 cd#(true, x) -> cd#(x > 0, x - 1) 0.00/0.11 R = 0.00/0.11 cd(true, x) -> cd(x > 0, x - 1) 0.00/0.11 0.00/0.11 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 cd#(true, x) -> cd_1#(x) 0.00/0.11 cd_1#(x) -> cd#(x > 0, x - 1) 0.00/0.11 cd_1#(x) -> cd_1#(x - 1) [x > 0] 0.00/0.11 R = 0.00/0.11 cd(true, x) -> cd(x > 0, x - 1) 0.00/0.11 0.00/0.11 The dependency graph for this problem is: 0.00/0.11 0 -> 2, 1 0.00/0.11 1 -> 0.00/0.11 2 -> 2, 1 0.00/0.11 Where: 0.00/0.11 0) cd#(true, x) -> cd_1#(x) 0.00/0.11 1) cd_1#(x) -> cd#(x > 0, x - 1) 0.00/0.11 2) cd_1#(x) -> cd_1#(x - 1) [x > 0] 0.00/0.11 0.00/0.11 We have the following SCCs. 0.00/0.11 { 2 } 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 cd_1#(x) -> cd_1#(x - 1) [x > 0] 0.00/0.11 R = 0.00/0.11 cd(true, x) -> cd(x > 0, x - 1) 0.00/0.11 0.00/0.11 We use the reverse value criterion with the projection function NU: 0.00/0.11 NU[cd_1#(z1)] = z1 0.00/0.11 0.00/0.11 This gives the following inequalities: 0.00/0.11 x > 0 ==> x > x - 1 with x >= 0 0.00/0.11 0.00/0.11 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.09 EOF