4.50/2.04 YES 4.50/2.06 proof of /export/starexec/sandbox2/benchmark/theBenchmark.itrs 4.50/2.06 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.50/2.06 4.50/2.06 4.50/2.06 Termination of the given ITRS could be proven: 4.50/2.06 4.50/2.06 (0) ITRS 4.50/2.06 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 4.50/2.06 (2) IDP 4.50/2.06 (3) UsableRulesProof [EQUIVALENT, 0 ms] 4.50/2.06 (4) IDP 4.50/2.06 (5) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.50/2.06 (6) IDP 4.50/2.06 (7) IDPNonInfProof [SOUND, 196 ms] 4.50/2.06 (8) AND 4.50/2.06 (9) IDP 4.50/2.06 (10) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.50/2.06 (11) TRUE 4.50/2.06 (12) IDP 4.50/2.06 (13) IDependencyGraphProof [EQUIVALENT, 0 ms] 4.50/2.06 (14) TRUE 4.50/2.06 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (0) 4.50/2.06 Obligation: 4.50/2.06 ITRS problem: 4.50/2.06 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 The TRS R consists of the following rules: 4.50/2.06 sqrt(x) -> f(x, 0, 1, 1) 4.50/2.06 f(x, z, u, w) -> Cond_f(x >= w && u >= 0, x, z, u, w) 4.50/2.06 Cond_f(TRUE, x, z, u, w) -> f(x, z + 1, u + 2, w + u + 2) 4.50/2.06 f(x, z, u, w) -> Cond_f1(w > x, x, z, u, w) 4.50/2.06 Cond_f1(TRUE, x, z, u, w) -> z 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (1) ITRStoIDPProof (EQUIVALENT) 4.50/2.06 Added dependency pairs 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (2) 4.50/2.06 Obligation: 4.50/2.06 IDP problem: 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 4.50/2.06 The following domains are used: 4.50/2.06 Boolean, Integer 4.50/2.06 4.50/2.06 The ITRS R consists of the following rules: 4.50/2.06 sqrt(x) -> f(x, 0, 1, 1) 4.50/2.06 f(x, z, u, w) -> Cond_f(x >= w && u >= 0, x, z, u, w) 4.50/2.06 Cond_f(TRUE, x, z, u, w) -> f(x, z + 1, u + 2, w + u + 2) 4.50/2.06 f(x, z, u, w) -> Cond_f1(w > x, x, z, u, w) 4.50/2.06 Cond_f1(TRUE, x, z, u, w) -> z 4.50/2.06 4.50/2.06 The integer pair graph contains the following rules and edges: 4.50/2.06 (0): SQRT(x[0]) -> F(x[0], 0, 1, 1) 4.50/2.06 (1): F(x[1], z[1], u[1], w[1]) -> COND_F(x[1] >= w[1] && u[1] >= 0, x[1], z[1], u[1], w[1]) 4.50/2.06 (2): COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], z[2] + 1, u[2] + 2, w[2] + u[2] + 2) 4.50/2.06 (3): F(x[3], z[3], u[3], w[3]) -> COND_F1(w[3] > x[3], x[3], z[3], u[3], w[3]) 4.50/2.06 4.50/2.06 (0) -> (1), if (x[0] ->^* x[1] & 0 ->^* z[1] & 1 ->^* u[1] & 1 ->^* w[1]) 4.50/2.06 (0) -> (3), if (x[0] ->^* x[3] & 0 ->^* z[3] & 1 ->^* u[3] & 1 ->^* w[3]) 4.50/2.06 (1) -> (2), if (x[1] >= w[1] && u[1] >= 0 & x[1] ->^* x[2] & z[1] ->^* z[2] & u[1] ->^* u[2] & w[1] ->^* w[2]) 4.50/2.06 (2) -> (1), if (x[2] ->^* x[1] & z[2] + 1 ->^* z[1] & u[2] + 2 ->^* u[1] & w[2] + u[2] + 2 ->^* w[1]) 4.50/2.06 (2) -> (3), if (x[2] ->^* x[3] & z[2] + 1 ->^* z[3] & u[2] + 2 ->^* u[3] & w[2] + u[2] + 2 ->^* w[3]) 4.50/2.06 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (3) UsableRulesProof (EQUIVALENT) 4.50/2.06 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (4) 4.50/2.06 Obligation: 4.50/2.06 IDP problem: 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 4.50/2.06 The following domains are used: 4.50/2.06 Boolean, Integer 4.50/2.06 4.50/2.06 R is empty. 4.50/2.06 4.50/2.06 The integer pair graph contains the following rules and edges: 4.50/2.06 (0): SQRT(x[0]) -> F(x[0], 0, 1, 1) 4.50/2.06 (1): F(x[1], z[1], u[1], w[1]) -> COND_F(x[1] >= w[1] && u[1] >= 0, x[1], z[1], u[1], w[1]) 4.50/2.06 (2): COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], z[2] + 1, u[2] + 2, w[2] + u[2] + 2) 4.50/2.06 (3): F(x[3], z[3], u[3], w[3]) -> COND_F1(w[3] > x[3], x[3], z[3], u[3], w[3]) 4.50/2.06 4.50/2.06 (0) -> (1), if (x[0] ->^* x[1] & 0 ->^* z[1] & 1 ->^* u[1] & 1 ->^* w[1]) 4.50/2.06 (0) -> (3), if (x[0] ->^* x[3] & 0 ->^* z[3] & 1 ->^* u[3] & 1 ->^* w[3]) 4.50/2.06 (1) -> (2), if (x[1] >= w[1] && u[1] >= 0 & x[1] ->^* x[2] & z[1] ->^* z[2] & u[1] ->^* u[2] & w[1] ->^* w[2]) 4.50/2.06 (2) -> (1), if (x[2] ->^* x[1] & z[2] + 1 ->^* z[1] & u[2] + 2 ->^* u[1] & w[2] + u[2] + 2 ->^* w[1]) 4.50/2.06 (2) -> (3), if (x[2] ->^* x[3] & z[2] + 1 ->^* z[3] & u[2] + 2 ->^* u[3] & w[2] + u[2] + 2 ->^* w[3]) 4.50/2.06 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (5) IDependencyGraphProof (EQUIVALENT) 4.50/2.06 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (6) 4.50/2.06 Obligation: 4.50/2.06 IDP problem: 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 4.50/2.06 The following domains are used: 4.50/2.06 Integer, Boolean 4.50/2.06 4.50/2.06 R is empty. 4.50/2.06 4.50/2.06 The integer pair graph contains the following rules and edges: 4.50/2.06 (2): COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], z[2] + 1, u[2] + 2, w[2] + u[2] + 2) 4.50/2.06 (1): F(x[1], z[1], u[1], w[1]) -> COND_F(x[1] >= w[1] && u[1] >= 0, x[1], z[1], u[1], w[1]) 4.50/2.06 4.50/2.06 (2) -> (1), if (x[2] ->^* x[1] & z[2] + 1 ->^* z[1] & u[2] + 2 ->^* u[1] & w[2] + u[2] + 2 ->^* w[1]) 4.50/2.06 (1) -> (2), if (x[1] >= w[1] && u[1] >= 0 & x[1] ->^* x[2] & z[1] ->^* z[2] & u[1] ->^* u[2] & w[1] ->^* w[2]) 4.50/2.06 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (7) IDPNonInfProof (SOUND) 4.50/2.06 Used the following options for this NonInfProof: 4.50/2.06 4.50/2.06 IDPGPoloSolver: 4.50/2.06 Range: [(-1,2)] 4.50/2.06 IsNat: false 4.50/2.06 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@5c9256b6 4.50/2.06 Constraint Generator: NonInfConstraintGenerator: 4.50/2.06 PathGenerator: MetricPathGenerator: 4.50/2.06 Max Left Steps: 1 4.50/2.06 Max Right Steps: 1 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 The constraints were generated the following way: 4.50/2.06 4.50/2.06 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 4.50/2.06 4.50/2.06 Note that final constraints are written in bold face. 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 For Pair COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)) the following chains were created: 4.50/2.06 *We consider the chain F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]), COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)), F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) which results in the following constraint: 4.50/2.06 4.50/2.06 (1) (&&(>=(x[1], w[1]), >=(u[1], 0))=TRUE & x[1]=x[2] & z[1]=z[2] & u[1]=u[2] & w[1]=w[2] & x[2]=x[1]1 & +(z[2], 1)=z[1]1 & +(u[2], 2)=u[1]1 & +(+(w[2], u[2]), 2)=w[1]1 ==> COND_F(TRUE, x[2], z[2], u[2], w[2])_>=_NonInfC & COND_F(TRUE, x[2], z[2], u[2], w[2])_>=_F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)) & (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=)) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 4.50/2.06 4.50/2.06 (2) (>=(x[1], w[1])=TRUE & >=(u[1], 0)=TRUE ==> COND_F(TRUE, x[1], z[1], u[1], w[1])_>=_NonInfC & COND_F(TRUE, x[1], z[1], u[1], w[1])_>=_F(x[1], +(z[1], 1), +(u[1], 2), +(+(w[1], u[1]), 2)) & (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=)) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.50/2.06 4.50/2.06 (3) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & [(-1)Bound*bni_16] + [(-1)bni_16]w[1] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.50/2.06 4.50/2.06 (4) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & [(-1)Bound*bni_16] + [(-1)bni_16]w[1] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.50/2.06 4.50/2.06 (5) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & [(-1)Bound*bni_16] + [(-1)bni_16]w[1] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.50/2.06 4.50/2.06 (6) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]w[1] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 4.50/2.06 4.50/2.06 (7) (x[1] >= 0 & u[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 4.50/2.06 4.50/2.06 (8) (x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 (9) (x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 For Pair F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) the following chains were created: 4.50/2.06 *We consider the chain F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]), COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)) which results in the following constraint: 4.50/2.06 4.50/2.06 (1) (&&(>=(x[1], w[1]), >=(u[1], 0))=TRUE & x[1]=x[2] & z[1]=z[2] & u[1]=u[2] & w[1]=w[2] ==> F(x[1], z[1], u[1], w[1])_>=_NonInfC & F(x[1], z[1], u[1], w[1])_>=_COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) & (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=)) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: 4.50/2.06 4.50/2.06 (2) (>=(x[1], w[1])=TRUE & >=(u[1], 0)=TRUE ==> F(x[1], z[1], u[1], w[1])_>=_NonInfC & F(x[1], z[1], u[1], w[1])_>=_COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) & (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=)) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 4.50/2.06 4.50/2.06 (3) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & [bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]w[1] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 4.50/2.06 4.50/2.06 (4) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & [bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]w[1] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 4.50/2.06 4.50/2.06 (5) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & [bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]w[1] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 4.50/2.06 4.50/2.06 (6) (x[1] + [-1]w[1] >= 0 & u[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]w[1] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: 4.50/2.06 4.50/2.06 (7) (x[1] >= 0 & u[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 4.50/2.06 4.50/2.06 (8) (x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 (9) (x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 To summarize, we get the following constraints P__>=_ for the following pairs. 4.50/2.06 4.50/2.06 *COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)) 4.50/2.06 4.50/2.06 *(x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 *(x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2))), >=) & 0 = 0 & [(-1)Bound*bni_16] + [(-1)bni_16]u[1] + [bni_16]x[1] >= 0 & [1 + (-1)bso_17] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 *F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) 4.50/2.06 4.50/2.06 *(x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 *(x[1] >= 0 & u[1] >= 0 & w[1] >= 0 ==> (U^Increasing(COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1])), >=) & 0 = 0 & [bni_18 + (-1)Bound*bni_18] + [bni_18]x[1] >= 0 & [(-1)bso_19] + u[1] >= 0) 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 4.50/2.06 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 4.50/2.06 4.50/2.06 Using the following integer polynomial ordering the resulting constraints can be solved 4.50/2.06 4.50/2.06 Polynomial interpretation over integers[POLO]: 4.50/2.06 4.50/2.06 POL(TRUE) = 0 4.50/2.06 POL(FALSE) = [1] 4.50/2.06 POL(COND_F(x_1, x_2, x_3, x_4, x_5)) = [-1]x_5 + [-1]x_4 + x_2 + [-1]x_1 4.50/2.06 POL(F(x_1, x_2, x_3, x_4)) = [1] + [-1]x_4 + x_1 4.50/2.06 POL(+(x_1, x_2)) = x_1 + x_2 4.50/2.06 POL(1) = [1] 4.50/2.06 POL(2) = [2] 4.50/2.06 POL(&&(x_1, x_2)) = [-1] 4.50/2.06 POL(>=(x_1, x_2)) = [-1] 4.50/2.06 POL(0) = 0 4.50/2.06 4.50/2.06 4.50/2.06 The following pairs are in P_>: 4.50/2.06 4.50/2.06 4.50/2.06 COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], +(z[2], 1), +(u[2], 2), +(+(w[2], u[2]), 2)) 4.50/2.06 4.50/2.06 4.50/2.06 The following pairs are in P_bound: 4.50/2.06 4.50/2.06 4.50/2.06 F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) 4.50/2.06 4.50/2.06 4.50/2.06 The following pairs are in P_>=: 4.50/2.06 4.50/2.06 4.50/2.06 F(x[1], z[1], u[1], w[1]) -> COND_F(&&(>=(x[1], w[1]), >=(u[1], 0)), x[1], z[1], u[1], w[1]) 4.50/2.06 4.50/2.06 4.50/2.06 At least the following rules have been oriented under context sensitive arithmetic replacement: 4.50/2.06 4.50/2.06 TRUE^1 -> &&(TRUE, TRUE)^1 4.50/2.06 FALSE^1 -> &&(TRUE, FALSE)^1 4.50/2.06 FALSE^1 -> &&(FALSE, TRUE)^1 4.50/2.06 FALSE^1 -> &&(FALSE, FALSE)^1 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (8) 4.50/2.06 Complex Obligation (AND) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (9) 4.50/2.06 Obligation: 4.50/2.06 IDP problem: 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 4.50/2.06 The following domains are used: 4.50/2.06 Boolean, Integer 4.50/2.06 4.50/2.06 R is empty. 4.50/2.06 4.50/2.06 The integer pair graph contains the following rules and edges: 4.50/2.06 (1): F(x[1], z[1], u[1], w[1]) -> COND_F(x[1] >= w[1] && u[1] >= 0, x[1], z[1], u[1], w[1]) 4.50/2.06 4.50/2.06 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (10) IDependencyGraphProof (EQUIVALENT) 4.50/2.06 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (11) 4.50/2.06 TRUE 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (12) 4.50/2.06 Obligation: 4.50/2.06 IDP problem: 4.50/2.06 The following function symbols are pre-defined: 4.50/2.06 <<< 4.50/2.06 & ~ Bwand: (Integer, Integer) -> Integer 4.50/2.06 >= ~ Ge: (Integer, Integer) -> Boolean 4.50/2.06 | ~ Bwor: (Integer, Integer) -> Integer 4.50/2.06 / ~ Div: (Integer, Integer) -> Integer 4.50/2.06 != ~ Neq: (Integer, Integer) -> Boolean 4.50/2.06 && ~ Land: (Boolean, Boolean) -> Boolean 4.50/2.06 ! ~ Lnot: (Boolean) -> Boolean 4.50/2.06 = ~ Eq: (Integer, Integer) -> Boolean 4.50/2.06 <= ~ Le: (Integer, Integer) -> Boolean 4.50/2.06 ^ ~ Bwxor: (Integer, Integer) -> Integer 4.50/2.06 % ~ Mod: (Integer, Integer) -> Integer 4.50/2.06 + ~ Add: (Integer, Integer) -> Integer 4.50/2.06 > ~ Gt: (Integer, Integer) -> Boolean 4.50/2.06 -1 ~ UnaryMinus: (Integer) -> Integer 4.50/2.06 < ~ Lt: (Integer, Integer) -> Boolean 4.50/2.06 || ~ Lor: (Boolean, Boolean) -> Boolean 4.50/2.06 - ~ Sub: (Integer, Integer) -> Integer 4.50/2.06 ~ ~ Bwnot: (Integer) -> Integer 4.50/2.06 * ~ Mul: (Integer, Integer) -> Integer 4.50/2.06 >>> 4.50/2.06 4.50/2.06 4.50/2.06 The following domains are used: 4.50/2.06 Integer 4.50/2.06 4.50/2.06 R is empty. 4.50/2.06 4.50/2.06 The integer pair graph contains the following rules and edges: 4.50/2.06 (2): COND_F(TRUE, x[2], z[2], u[2], w[2]) -> F(x[2], z[2] + 1, u[2] + 2, w[2] + u[2] + 2) 4.50/2.06 4.50/2.06 4.50/2.06 The set Q consists of the following terms: 4.50/2.06 sqrt(x0) 4.50/2.06 f(x0, x1, x2, x3) 4.50/2.06 Cond_f(TRUE, x0, x1, x2, x3) 4.50/2.06 Cond_f1(TRUE, x0, x1, x2, x3) 4.50/2.06 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (13) IDependencyGraphProof (EQUIVALENT) 4.50/2.06 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 4.50/2.06 ---------------------------------------- 4.50/2.06 4.50/2.06 (14) 4.50/2.06 TRUE 4.80/2.14 EOF