3.73/1.89 YES 3.73/1.90 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 3.73/1.90 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.73/1.90 3.73/1.90 3.73/1.90 Termination of the given ITRS could be proven: 3.73/1.90 3.73/1.90 (0) ITRS 3.73/1.90 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.73/1.90 (2) IDP 3.73/1.90 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.73/1.90 (4) IDP 3.73/1.90 (5) IDPNonInfProof [SOUND, 170 ms] 3.73/1.90 (6) IDP 3.73/1.90 (7) PisEmptyProof [EQUIVALENT, 0 ms] 3.73/1.90 (8) YES 3.73/1.90 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (0) 3.73/1.90 Obligation: 3.73/1.90 ITRS problem: 3.73/1.90 3.73/1.90 The following function symbols are pre-defined: 3.73/1.90 <<< 3.73/1.90 & ~ Bwand: (Integer, Integer) -> Integer 3.73/1.90 >= ~ Ge: (Integer, Integer) -> Boolean 3.73/1.90 | ~ Bwor: (Integer, Integer) -> Integer 3.73/1.90 / ~ Div: (Integer, Integer) -> Integer 3.73/1.90 != ~ Neq: (Integer, Integer) -> Boolean 3.73/1.90 && ~ Land: (Boolean, Boolean) -> Boolean 3.73/1.90 ! ~ Lnot: (Boolean) -> Boolean 3.73/1.90 = ~ Eq: (Integer, Integer) -> Boolean 3.73/1.90 <= ~ Le: (Integer, Integer) -> Boolean 3.73/1.90 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.73/1.90 % ~ Mod: (Integer, Integer) -> Integer 3.73/1.90 > ~ Gt: (Integer, Integer) -> Boolean 3.73/1.90 + ~ Add: (Integer, Integer) -> Integer 3.73/1.90 -1 ~ UnaryMinus: (Integer) -> Integer 3.73/1.90 < ~ Lt: (Integer, Integer) -> Boolean 3.73/1.90 || ~ Lor: (Boolean, Boolean) -> Boolean 3.73/1.90 - ~ Sub: (Integer, Integer) -> Integer 3.73/1.90 ~ ~ Bwnot: (Integer) -> Integer 3.73/1.90 * ~ Mul: (Integer, Integer) -> Integer 3.73/1.90 >>> 3.73/1.90 3.73/1.90 The TRS R consists of the following rules: 3.73/1.90 f(TRUE, x) -> f(x > y && x >= 0, y) 3.73/1.90 The set Q consists of the following terms: 3.73/1.90 f(TRUE, x0) 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (1) ITRStoIDPProof (EQUIVALENT) 3.73/1.90 Added dependency pairs 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (2) 3.73/1.90 Obligation: 3.73/1.90 IDP problem: 3.73/1.90 The following function symbols are pre-defined: 3.73/1.90 <<< 3.73/1.90 & ~ Bwand: (Integer, Integer) -> Integer 3.73/1.90 >= ~ Ge: (Integer, Integer) -> Boolean 3.73/1.90 | ~ Bwor: (Integer, Integer) -> Integer 3.73/1.90 / ~ Div: (Integer, Integer) -> Integer 3.73/1.90 != ~ Neq: (Integer, Integer) -> Boolean 3.73/1.90 && ~ Land: (Boolean, Boolean) -> Boolean 3.73/1.90 ! ~ Lnot: (Boolean) -> Boolean 3.73/1.90 = ~ Eq: (Integer, Integer) -> Boolean 3.73/1.90 <= ~ Le: (Integer, Integer) -> Boolean 3.73/1.90 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.73/1.90 % ~ Mod: (Integer, Integer) -> Integer 3.73/1.90 > ~ Gt: (Integer, Integer) -> Boolean 3.73/1.90 + ~ Add: (Integer, Integer) -> Integer 3.73/1.90 -1 ~ UnaryMinus: (Integer) -> Integer 3.73/1.90 < ~ Lt: (Integer, Integer) -> Boolean 3.73/1.90 || ~ Lor: (Boolean, Boolean) -> Boolean 3.73/1.90 - ~ Sub: (Integer, Integer) -> Integer 3.73/1.90 ~ ~ Bwnot: (Integer) -> Integer 3.73/1.90 * ~ Mul: (Integer, Integer) -> Integer 3.73/1.90 >>> 3.73/1.90 3.73/1.90 3.73/1.90 The following domains are used: 3.73/1.90 Boolean, Integer 3.73/1.90 3.73/1.90 The ITRS R consists of the following rules: 3.73/1.90 f(TRUE, x) -> f(x > y && x >= 0, y) 3.73/1.90 3.73/1.90 The integer pair graph contains the following rules and edges: 3.73/1.90 (0): F(TRUE, x[0]) -> F(x[0] > y[0] && x[0] >= 0, y[0]) 3.73/1.90 3.73/1.90 (0) -> (0), if (x[0] > y[0] && x[0] >= 0 & y[0] ->^* x[0]') 3.73/1.90 3.73/1.90 The set Q consists of the following terms: 3.73/1.90 f(TRUE, x0) 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (3) UsableRulesProof (EQUIVALENT) 3.73/1.90 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (4) 3.73/1.90 Obligation: 3.73/1.90 IDP problem: 3.73/1.90 The following function symbols are pre-defined: 3.73/1.90 <<< 3.73/1.90 & ~ Bwand: (Integer, Integer) -> Integer 3.73/1.90 >= ~ Ge: (Integer, Integer) -> Boolean 3.73/1.90 | ~ Bwor: (Integer, Integer) -> Integer 3.73/1.90 / ~ Div: (Integer, Integer) -> Integer 3.73/1.90 != ~ Neq: (Integer, Integer) -> Boolean 3.73/1.90 && ~ Land: (Boolean, Boolean) -> Boolean 3.73/1.90 ! ~ Lnot: (Boolean) -> Boolean 3.73/1.90 = ~ Eq: (Integer, Integer) -> Boolean 3.73/1.90 <= ~ Le: (Integer, Integer) -> Boolean 3.73/1.90 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.73/1.90 % ~ Mod: (Integer, Integer) -> Integer 3.73/1.90 > ~ Gt: (Integer, Integer) -> Boolean 3.73/1.90 + ~ Add: (Integer, Integer) -> Integer 3.73/1.90 -1 ~ UnaryMinus: (Integer) -> Integer 3.73/1.90 < ~ Lt: (Integer, Integer) -> Boolean 3.73/1.90 || ~ Lor: (Boolean, Boolean) -> Boolean 3.73/1.90 - ~ Sub: (Integer, Integer) -> Integer 3.73/1.90 ~ ~ Bwnot: (Integer) -> Integer 3.73/1.90 * ~ Mul: (Integer, Integer) -> Integer 3.73/1.90 >>> 3.73/1.90 3.73/1.90 3.73/1.90 The following domains are used: 3.73/1.90 Boolean, Integer 3.73/1.90 3.73/1.90 R is empty. 3.73/1.90 3.73/1.90 The integer pair graph contains the following rules and edges: 3.73/1.90 (0): F(TRUE, x[0]) -> F(x[0] > y[0] && x[0] >= 0, y[0]) 3.73/1.90 3.73/1.90 (0) -> (0), if (x[0] > y[0] && x[0] >= 0 & y[0] ->^* x[0]') 3.73/1.90 3.73/1.90 The set Q consists of the following terms: 3.73/1.90 f(TRUE, x0) 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (5) IDPNonInfProof (SOUND) 3.73/1.90 Used the following options for this NonInfProof: 3.73/1.90 3.73/1.90 IDPGPoloSolver: 3.73/1.90 Range: [(-1,2)] 3.73/1.90 IsNat: false 3.73/1.90 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@590630b9 3.73/1.90 Constraint Generator: NonInfConstraintGenerator: 3.73/1.90 PathGenerator: MetricPathGenerator: 3.73/1.90 Max Left Steps: 1 3.73/1.90 Max Right Steps: 1 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 The constraints were generated the following way: 3.73/1.90 3.73/1.90 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.73/1.90 3.73/1.90 Note that final constraints are written in bold face. 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 For Pair F(TRUE, x) -> F(&&(>(x, y), >=(x, 0)), y) the following chains were created: 3.73/1.90 *We consider the chain F(TRUE, x[0]) -> F(&&(>(x[0], y[0]), >=(x[0], 0)), y[0]), F(TRUE, x[0]) -> F(&&(>(x[0], y[0]), >=(x[0], 0)), y[0]), F(TRUE, x[0]) -> F(&&(>(x[0], y[0]), >=(x[0], 0)), y[0]) which results in the following constraint: 3.73/1.90 3.73/1.90 (1) (&&(>(x[0], y[0]), >=(x[0], 0))=TRUE & y[0]=x[0]1 & &&(>(x[0]1, y[0]1), >=(x[0]1, 0))=TRUE & y[0]1=x[0]2 ==> F(TRUE, x[0]1)_>=_NonInfC & F(TRUE, x[0]1)_>=_F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=)) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint: 3.73/1.90 3.73/1.90 (2) (>(x[0], y[0])=TRUE & >=(x[0], 0)=TRUE & >(y[0], y[0]1)=TRUE & >=(y[0], 0)=TRUE ==> F(TRUE, y[0])_>=_NonInfC & F(TRUE, y[0])_>=_F(&&(>(y[0], y[0]1), >=(y[0], 0)), y[0]1) & (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=)) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.73/1.90 3.73/1.90 (3) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + [-1]y[0]1 >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + [-1]y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.73/1.90 3.73/1.90 (4) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + [-1]y[0]1 >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + [-1]y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.73/1.90 3.73/1.90 (5) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + [-1]y[0]1 >= 0 & y[0] >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + [-1]y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraints: 3.73/1.90 3.73/1.90 (6) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + y[0]1 >= 0 & y[0] >= 0 & y[0]1 >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + y[0]1 >= 0) 3.73/1.90 3.73/1.90 (7) (x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + [-1]y[0]1 >= 0 & y[0] >= 0 & y[0]1 >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + [-1]y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 To summarize, we get the following constraints P__>=_ for the following pairs. 3.73/1.90 3.73/1.90 *F(TRUE, x) -> F(&&(>(x, y), >=(x, 0)), y) 3.73/1.90 3.73/1.90 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + y[0]1 >= 0 & y[0] >= 0 & y[0]1 >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 *(x[0] + [-1] + [-1]y[0] >= 0 & x[0] >= 0 & y[0] + [-1] + [-1]y[0]1 >= 0 & y[0] >= 0 & y[0]1 >= 0 ==> (U^Increasing(F(&&(>(x[0]1, y[0]1), >=(x[0]1, 0)), y[0]1)), >=) & [(-1)Bound*bni_9] + [bni_9]y[0] >= 0 & [(-1)bso_10] + y[0] + [-1]y[0]1 >= 0) 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 3.73/1.90 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.73/1.90 3.73/1.90 Using the following integer polynomial ordering the resulting constraints can be solved 3.73/1.90 3.73/1.90 Polynomial interpretation over integers[POLO]: 3.73/1.90 3.73/1.90 POL(TRUE) = [2] 3.73/1.90 POL(FALSE) = [3] 3.73/1.90 POL(F(x_1, x_2)) = [2] + x_2 + [-1]x_1 3.73/1.90 POL(&&(x_1, x_2)) = [2] 3.73/1.90 POL(>(x_1, x_2)) = [-1] 3.73/1.90 POL(>=(x_1, x_2)) = [-1] 3.73/1.90 POL(0) = 0 3.73/1.90 3.73/1.90 3.73/1.90 The following pairs are in P_>: 3.73/1.90 3.73/1.90 3.73/1.90 F(TRUE, x[0]) -> F(&&(>(x[0], y[0]), >=(x[0], 0)), y[0]) 3.73/1.90 3.73/1.90 3.73/1.90 The following pairs are in P_bound: 3.73/1.90 3.73/1.90 3.73/1.90 F(TRUE, x[0]) -> F(&&(>(x[0], y[0]), >=(x[0], 0)), y[0]) 3.73/1.90 3.73/1.90 3.73/1.90 The following pairs are in P_>=: 3.73/1.90 3.73/1.90 none 3.73/1.90 3.73/1.90 3.73/1.90 At least the following rules have been oriented under context sensitive arithmetic replacement: 3.73/1.90 3.73/1.90 TRUE^1 -> &&(TRUE, TRUE)^1 3.73/1.90 FALSE^1 -> &&(TRUE, FALSE)^1 3.73/1.90 FALSE^1 -> &&(FALSE, TRUE)^1 3.73/1.90 FALSE^1 -> &&(FALSE, FALSE)^1 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (6) 3.73/1.90 Obligation: 3.73/1.90 IDP problem: 3.73/1.90 The following function symbols are pre-defined: 3.73/1.90 <<< 3.73/1.90 & ~ Bwand: (Integer, Integer) -> Integer 3.73/1.90 >= ~ Ge: (Integer, Integer) -> Boolean 3.73/1.90 | ~ Bwor: (Integer, Integer) -> Integer 3.73/1.90 / ~ Div: (Integer, Integer) -> Integer 3.73/1.90 != ~ Neq: (Integer, Integer) -> Boolean 3.73/1.90 && ~ Land: (Boolean, Boolean) -> Boolean 3.73/1.90 ! ~ Lnot: (Boolean) -> Boolean 3.73/1.90 = ~ Eq: (Integer, Integer) -> Boolean 3.73/1.90 <= ~ Le: (Integer, Integer) -> Boolean 3.73/1.90 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.73/1.90 % ~ Mod: (Integer, Integer) -> Integer 3.73/1.90 > ~ Gt: (Integer, Integer) -> Boolean 3.73/1.90 + ~ Add: (Integer, Integer) -> Integer 3.73/1.90 -1 ~ UnaryMinus: (Integer) -> Integer 3.73/1.90 < ~ Lt: (Integer, Integer) -> Boolean 3.73/1.90 || ~ Lor: (Boolean, Boolean) -> Boolean 3.73/1.90 - ~ Sub: (Integer, Integer) -> Integer 3.73/1.90 ~ ~ Bwnot: (Integer) -> Integer 3.73/1.90 * ~ Mul: (Integer, Integer) -> Integer 3.73/1.90 >>> 3.73/1.90 3.73/1.90 3.73/1.90 The following domains are used: 3.73/1.90 none 3.73/1.90 3.73/1.90 R is empty. 3.73/1.90 3.73/1.90 The integer pair graph is empty. 3.73/1.90 3.73/1.90 The set Q consists of the following terms: 3.73/1.90 f(TRUE, x0) 3.73/1.90 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (7) PisEmptyProof (EQUIVALENT) 3.73/1.90 The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.73/1.90 ---------------------------------------- 3.73/1.90 3.73/1.90 (8) 3.73/1.90 YES 3.87/1.91 EOF