0.00/0.11 YES 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 f#(true, x) -> f#(x > y && x >= 0, y) 0.00/0.11 R = 0.00/0.11 f(true, x) -> f(x > y && x >= 0, y) 0.00/0.11 0.00/0.11 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 f#(true, x) -> f_1#(x) 0.00/0.11 f_1#(x) -> f#(x > y && x >= 0, y) 0.00/0.11 f_1#(x) -> f_1#(y) [x > y && x >= 0] 0.00/0.11 R = 0.00/0.11 f(true, x) -> f(x > y && x >= 0, y) 0.00/0.11 0.00/0.11 The dependency graph for this problem is: 0.00/0.11 0 -> 2, 1 0.00/0.11 1 -> 0.00/0.11 2 -> 2, 1 0.00/0.11 Where: 0.00/0.11 0) f#(true, x) -> f_1#(x) 0.00/0.11 1) f_1#(x) -> f#(x > y && x >= 0, y) 0.00/0.11 2) f_1#(x) -> f_1#(y) [x > y && x >= 0] 0.00/0.11 0.00/0.11 We have the following SCCs. 0.00/0.11 { 2 } 0.00/0.11 0.00/0.11 DP problem for innermost termination. 0.00/0.11 P = 0.00/0.11 f_1#(x) -> f_1#(y) [x > y && x >= 0] 0.00/0.11 R = 0.00/0.11 f(true, x) -> f(x > y && x >= 0, y) 0.00/0.11 0.00/0.11 We use the reverse value criterion with the projection function NU: 0.00/0.11 NU[f_1#(z1)] = z1 0.00/0.11 0.00/0.11 This gives the following inequalities: 0.00/0.11 x > y && x >= 0 ==> x > y with x >= 0 0.00/0.11 0.00/0.11 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.09 EOF