0.00/0.14 YES 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.14 rand#(I1, y) -> id_inc#(y) [I1 > 0] 0.00/0.14 random#(I4) -> rand#(I4, 0) [I4 >= 0] 0.00/0.14 R = 0.00/0.14 id_inc(x) -> x + 1 0.00/0.14 id_inc(I0) -> I0 0.00/0.14 rand(I1, y) -> rand(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.14 rand(I2, I3) -> I3 [I2 = 0] 0.00/0.14 random(I4) -> rand(I4, 0) [I4 >= 0] 0.00/0.14 0.00/0.14 The dependency graph for this problem is: 0.00/0.14 0 -> 0, 1 0.00/0.14 1 -> 0.00/0.14 2 -> 0, 1 0.00/0.14 Where: 0.00/0.14 0) rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.14 1) rand#(I1, y) -> id_inc#(y) [I1 > 0] 0.00/0.14 2) random#(I4) -> rand#(I4, 0) [I4 >= 0] 0.00/0.14 0.00/0.14 We have the following SCCs. 0.00/0.14 { 0 } 0.00/0.14 0.00/0.14 DP problem for innermost termination. 0.00/0.14 P = 0.00/0.14 rand#(I1, y) -> rand#(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.14 R = 0.00/0.14 id_inc(x) -> x + 1 0.00/0.14 id_inc(I0) -> I0 0.00/0.14 rand(I1, y) -> rand(I1 - 1, id_inc(y)) [I1 > 0] 0.00/0.14 rand(I2, I3) -> I3 [I2 = 0] 0.00/0.14 random(I4) -> rand(I4, 0) [I4 >= 0] 0.00/0.14 0.00/0.14 We use the reverse value criterion with the projection function NU: 0.00/0.14 NU[rand#(z1,z2)] = z1 0.00/0.14 0.00/0.14 This gives the following inequalities: 0.00/0.14 I1 > 0 ==> I1 > I1 - 1 with I1 >= 0 0.00/0.14 0.00/0.14 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.12 EOF