0.00/0.13 YES 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 eval_2#(x, y) -> eval_1#(x, y) [0 >= y] 0.00/0.13 eval_2#(I0, I1) -> eval_2#(I0 - 1, I1 - 1) [I1 > 0] 0.00/0.13 eval_1#(I2, I3) -> eval_2#(I2, I3) [I2 = I3 && I2 > 0] 0.00/0.13 R = 0.00/0.13 eval_2(x, y) -> eval_1(x, y) [0 >= y] 0.00/0.13 eval_2(I0, I1) -> eval_2(I0 - 1, I1 - 1) [I1 > 0] 0.00/0.13 eval_1(I2, I3) -> eval_2(I2, I3) [I2 = I3 && I2 > 0] 0.00/0.13 0.00/0.13 The dependency graph for this problem is: 0.00/0.13 0 -> 0.00/0.13 1 -> 0, 1 0.00/0.13 2 -> 1 0.00/0.13 Where: 0.00/0.13 0) eval_2#(x, y) -> eval_1#(x, y) [0 >= y] 0.00/0.13 1) eval_2#(I0, I1) -> eval_2#(I0 - 1, I1 - 1) [I1 > 0] 0.00/0.13 2) eval_1#(I2, I3) -> eval_2#(I2, I3) [I2 = I3 && I2 > 0] 0.00/0.13 0.00/0.13 We have the following SCCs. 0.00/0.13 { 1 } 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 eval_2#(I0, I1) -> eval_2#(I0 - 1, I1 - 1) [I1 > 0] 0.00/0.13 R = 0.00/0.13 eval_2(x, y) -> eval_1(x, y) [0 >= y] 0.00/0.13 eval_2(I0, I1) -> eval_2(I0 - 1, I1 - 1) [I1 > 0] 0.00/0.13 eval_1(I2, I3) -> eval_2(I2, I3) [I2 = I3 && I2 > 0] 0.00/0.13 0.00/0.13 We use the reverse value criterion with the projection function NU: 0.00/0.13 NU[eval_2#(z1,z2)] = z2 + -1 * 0 0.00/0.13 0.00/0.13 This gives the following inequalities: 0.00/0.13 I1 > 0 ==> I1 + -1 * 0 > I1 - 1 + -1 * 0 with I1 + -1 * 0 >= 0 0.00/0.13 0.00/0.13 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.11 EOF