0.00/0.10 MAYBE 0.00/0.10 0.00/0.10 DP problem for innermost termination. 0.00/0.10 P = 0.00/0.10 if_3#(pair(m, zs), x, ys) -> msort#(zs) 0.00/0.10 msort#(ins(I0, B0)) -> if_3#(min(I0, B0), I0, B0) 0.00/0.10 msort#(ins(I0, B0)) -> min#(I0, B0) 0.00/0.10 min#(I3, ins(I4, B2)) -> if_2#(min(I4, B2), I3, I4, B2) 0.00/0.10 min#(I3, ins(I4, B2)) -> min#(I4, B2) 0.00/0.10 min#(I8, ins(I9, B5)) -> if_1#(min(I9, B5), I8, I9, B5) 0.00/0.10 min#(I8, ins(I9, B5)) -> min#(I9, B5) 0.00/0.10 R = 0.00/0.10 if_3(pair(m, zs), x, ys) -> cons(m, msort(zs)) 0.00/0.10 msort(ins(I0, B0)) -> if_3(min(I0, B0), I0, B0) 0.00/0.10 msort(e) -> nil 0.00/0.10 if_2(pair(I1, zh), I2, y, B1) -> pair(I1, ins(I2, zh)) [I2 >= I1] 0.00/0.10 min(I3, ins(I4, B2)) -> if_2(min(I4, B2), I3, I4, B2) 0.00/0.10 if_1(pair(I5, B3), I6, I7, B4) -> pair(I6, ins(I5, B3)) [I5 > I6] 0.00/0.10 min(I8, ins(I9, B5)) -> if_1(min(I9, B5), I8, I9, B5) 0.00/0.10 min(I10, e) -> pair(I10, e) 0.00/0.10 0.00/0.10 The dependency graph for this problem is: 0.00/0.10 0 -> 1, 2 0.00/0.10 1 -> 0 0.00/0.10 2 -> 3, 4, 5, 6 0.00/0.10 3 -> 0.00/0.10 4 -> 3, 4, 5, 6 0.00/0.10 5 -> 0.00/0.10 6 -> 3, 4, 5, 6 0.00/0.10 Where: 0.00/0.10 0) if_3#(pair(m, zs), x, ys) -> msort#(zs) 0.00/0.10 1) msort#(ins(I0, B0)) -> if_3#(min(I0, B0), I0, B0) 0.00/0.10 2) msort#(ins(I0, B0)) -> min#(I0, B0) 0.00/0.10 3) min#(I3, ins(I4, B2)) -> if_2#(min(I4, B2), I3, I4, B2) 0.00/0.10 4) min#(I3, ins(I4, B2)) -> min#(I4, B2) 0.00/0.10 5) min#(I8, ins(I9, B5)) -> if_1#(min(I9, B5), I8, I9, B5) 0.00/0.10 6) min#(I8, ins(I9, B5)) -> min#(I9, B5) 0.00/0.10 0.00/0.10 We have the following SCCs. 0.00/0.10 { 0, 1 } 0.00/0.10 { 4, 6 } 0.00/0.10 0.00/0.10 DP problem for innermost termination. 0.00/0.10 P = 0.00/0.10 min#(I3, ins(I4, B2)) -> min#(I4, B2) 0.00/0.10 min#(I8, ins(I9, B5)) -> min#(I9, B5) 0.00/0.10 R = 0.00/0.10 if_3(pair(m, zs), x, ys) -> cons(m, msort(zs)) 0.00/0.10 msort(ins(I0, B0)) -> if_3(min(I0, B0), I0, B0) 0.00/0.10 msort(e) -> nil 0.00/0.10 if_2(pair(I1, zh), I2, y, B1) -> pair(I1, ins(I2, zh)) [I2 >= I1] 0.00/0.10 min(I3, ins(I4, B2)) -> if_2(min(I4, B2), I3, I4, B2) 0.00/0.10 if_1(pair(I5, B3), I6, I7, B4) -> pair(I6, ins(I5, B3)) [I5 > I6] 0.00/0.10 min(I8, ins(I9, B5)) -> if_1(min(I9, B5), I8, I9, B5) 0.00/0.10 min(I10, e) -> pair(I10, e) 0.00/0.10 0.00/0.10 We use the subterm criterion with the projection function NU: 0.00/0.10 NU[min#(x0,x1)] = x1 0.00/0.10 0.00/0.10 This gives the following inequalities: 0.00/0.10 ins(I4, B2) |> B2 0.00/0.10 ins(I9, B5) |> B5 0.00/0.10 0.00/0.10 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.10 0.00/0.10 DP problem for innermost termination. 0.00/0.10 P = 0.00/0.10 if_3#(pair(m, zs), x, ys) -> msort#(zs) 0.00/0.10 msort#(ins(I0, B0)) -> if_3#(min(I0, B0), I0, B0) 0.00/0.10 R = 0.00/0.10 if_3(pair(m, zs), x, ys) -> cons(m, msort(zs)) 0.00/0.10 msort(ins(I0, B0)) -> if_3(min(I0, B0), I0, B0) 0.00/0.10 msort(e) -> nil 0.00/0.10 if_2(pair(I1, zh), I2, y, B1) -> pair(I1, ins(I2, zh)) [I2 >= I1] 0.00/0.10 min(I3, ins(I4, B2)) -> if_2(min(I4, B2), I3, I4, B2) 0.00/0.10 if_1(pair(I5, B3), I6, I7, B4) -> pair(I6, ins(I5, B3)) [I5 > I6] 0.00/0.10 min(I8, ins(I9, B5)) -> if_1(min(I9, B5), I8, I9, B5) 0.00/0.10 min(I10, e) -> pair(I10, e) 0.00/0.10 0.00/3.08 EOF