0.00/0.33 YES 0.00/0.33 0.00/0.33 DP problem for innermost termination. 0.00/0.33 P = 0.00/0.33 lif#(true, I0, I1) -> log#(I0 / I1, I1) 0.00/0.33 log#(I2, I3) -> lif#(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 R = 0.00/0.33 lif(false, x, y) -> 0 0.00/0.33 lif(true, I0, I1) -> 1 + log(I0 / I1, I1) 0.00/0.33 log(I2, I3) -> lif(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 0.00/0.33 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.33 0.00/0.33 DP problem for innermost termination. 0.00/0.33 P = 0.00/0.33 lif#(true, I0, I1) -> log#(I0 / I1, I1) 0.00/0.33 log#(I2, I3) -> lif#(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 log#(I2, I3) -> log#(I2 / I3, I3) [I2 >= I3 && I3 > 1] 0.00/0.33 R = 0.00/0.33 lif(false, x, y) -> 0 0.00/0.33 lif(true, I0, I1) -> 1 + log(I0 / I1, I1) 0.00/0.33 log(I2, I3) -> lif(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 0.00/0.33 The dependency graph for this problem is: 0.00/0.33 0 -> 2, 1 0.00/0.33 1 -> 0.00/0.33 2 -> 2, 1 0.00/0.33 Where: 0.00/0.33 0) lif#(true, I0, I1) -> log#(I0 / I1, I1) 0.00/0.33 1) log#(I2, I3) -> lif#(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 2) log#(I2, I3) -> log#(I2 / I3, I3) [I2 >= I3 && I3 > 1] 0.00/0.33 0.00/0.33 We have the following SCCs. 0.00/0.33 { 2 } 0.00/0.33 0.00/0.33 DP problem for innermost termination. 0.00/0.33 P = 0.00/0.33 log#(I2, I3) -> log#(I2 / I3, I3) [I2 >= I3 && I3 > 1] 0.00/0.33 R = 0.00/0.33 lif(false, x, y) -> 0 0.00/0.33 lif(true, I0, I1) -> 1 + log(I0 / I1, I1) 0.00/0.33 log(I2, I3) -> lif(I2 >= I3 && I3 > 1, I2, I3) 0.00/0.33 0.00/0.33 We use the reverse value criterion with the projection function NU: 0.00/0.33 NU[log#(z1,z2)] = z1 0.00/0.33 0.00/0.33 This gives the following inequalities: 0.00/0.33 I2 >= I3 && I3 > 1 ==> I2 > I2 / I3 with I2 >= 0 0.00/0.33 0.00/0.33 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.31 EOF