0.00/0.30 YES 0.00/0.30 0.00/0.30 DP problem for innermost termination. 0.00/0.30 P = 0.00/0.30 rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 rand#(I3, y) -> id_dec#(y) [0 > I3] 0.00/0.30 rand#(I4, B0) -> rand#(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 rand#(I4, B0) -> id_inc#(B0) [I4 > 0] 0.00/0.30 random#(I6) -> rand#(I6, w(0)) 0.00/0.30 R = 0.00/0.30 id_dec(w(x)) -> w(x - 1) 0.00/0.30 id_dec(w(I0)) -> w(I0) 0.00/0.30 id_inc(w(I1)) -> w(I1 + 1) 0.00/0.30 id_inc(w(I2)) -> w(I2) 0.00/0.30 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 rand(I4, B0) -> rand(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 rand(I5, B1) -> B1 [I5 = 0] 0.00/0.30 random(I6) -> rand(I6, w(0)) 0.00/0.30 0.00/0.30 The dependency graph for this problem is: 0.00/0.30 0 -> 0, 1 0.00/0.30 1 -> 0.00/0.30 2 -> 2, 3 0.00/0.30 3 -> 0.00/0.30 4 -> 0, 1, 2, 3 0.00/0.30 Where: 0.00/0.30 0) rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 1) rand#(I3, y) -> id_dec#(y) [0 > I3] 0.00/0.30 2) rand#(I4, B0) -> rand#(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 3) rand#(I4, B0) -> id_inc#(B0) [I4 > 0] 0.00/0.30 4) random#(I6) -> rand#(I6, w(0)) 0.00/0.30 0.00/0.30 We have the following SCCs. 0.00/0.30 { 2 } 0.00/0.30 { 0 } 0.00/0.30 0.00/0.30 DP problem for innermost termination. 0.00/0.30 P = 0.00/0.30 rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 R = 0.00/0.30 id_dec(w(x)) -> w(x - 1) 0.00/0.30 id_dec(w(I0)) -> w(I0) 0.00/0.30 id_inc(w(I1)) -> w(I1 + 1) 0.00/0.30 id_inc(w(I2)) -> w(I2) 0.00/0.30 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 rand(I4, B0) -> rand(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 rand(I5, B1) -> B1 [I5 = 0] 0.00/0.30 random(I6) -> rand(I6, w(0)) 0.00/0.30 0.00/0.30 We use the reverse value criterion with the projection function NU: 0.00/0.30 NU[rand#(z1,z2)] = 0 + -1 * z1 0.00/0.30 0.00/0.30 This gives the following inequalities: 0.00/0.30 0 > I3 ==> 0 + -1 * I3 > 0 + -1 * (I3 + 1) with 0 + -1 * I3 >= 0 0.00/0.30 0.00/0.30 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.30 0.00/0.30 DP problem for innermost termination. 0.00/0.30 P = 0.00/0.30 rand#(I4, B0) -> rand#(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 R = 0.00/0.30 id_dec(w(x)) -> w(x - 1) 0.00/0.30 id_dec(w(I0)) -> w(I0) 0.00/0.30 id_inc(w(I1)) -> w(I1 + 1) 0.00/0.30 id_inc(w(I2)) -> w(I2) 0.00/0.30 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.30 rand(I4, B0) -> rand(I4 - 1, id_inc(B0)) [I4 > 0] 0.00/0.30 rand(I5, B1) -> B1 [I5 = 0] 0.00/0.30 random(I6) -> rand(I6, w(0)) 0.00/0.30 0.00/0.30 We use the reverse value criterion with the projection function NU: 0.00/0.30 NU[rand#(z1,z2)] = z1 0.00/0.30 0.00/0.30 This gives the following inequalities: 0.00/0.30 I4 > 0 ==> I4 > I4 - 1 with I4 >= 0 0.00/0.30 0.00/0.30 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.28 EOF