0.00/0.13 YES 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 f#(true, x) -> f#(1000 >= x, x + 1) 0.00/0.13 R = 0.00/0.13 f(true, x) -> f(1000 >= x, x + 1) 0.00/0.13 0.00/0.13 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 f#(true, x) -> f_1#(x) 0.00/0.13 f_1#(x) -> f#(1000 >= x, x + 1) 0.00/0.13 f_1#(x) -> f_1#(x + 1) [1000 >= x] 0.00/0.13 R = 0.00/0.13 f(true, x) -> f(1000 >= x, x + 1) 0.00/0.13 0.00/0.13 The dependency graph for this problem is: 0.00/0.13 0 -> 2, 1 0.00/0.13 1 -> 0.00/0.13 2 -> 2, 1 0.00/0.13 Where: 0.00/0.13 0) f#(true, x) -> f_1#(x) 0.00/0.13 1) f_1#(x) -> f#(1000 >= x, x + 1) 0.00/0.13 2) f_1#(x) -> f_1#(x + 1) [1000 >= x] 0.00/0.13 0.00/0.13 We have the following SCCs. 0.00/0.13 { 2 } 0.00/0.13 0.00/0.13 DP problem for innermost termination. 0.00/0.13 P = 0.00/0.13 f_1#(x) -> f_1#(x + 1) [1000 >= x] 0.00/0.13 R = 0.00/0.13 f(true, x) -> f(1000 >= x, x + 1) 0.00/0.13 0.00/0.13 We use the reverse value criterion with the projection function NU: 0.00/0.13 NU[f_1#(z1)] = 1000 + -1 * z1 0.00/0.13 0.00/0.13 This gives the following inequalities: 0.00/0.13 1000 >= x ==> 1000 + -1 * x > 1000 + -1 * (x + 1) with 1000 + -1 * x >= 0 0.00/0.13 0.00/0.13 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.11 EOF