0.00/0.12 YES 0.00/0.12 0.00/0.12 DP problem for innermost termination. 0.00/0.12 P = 0.00/0.12 mult#(x, y) -> mult#(0 - x, y) [0 > x] 0.00/0.12 mult#(I0, I1) -> mult#(I0 - 1, I1) [I0 > 0] 0.00/0.12 R = 0.00/0.12 mult(x, y) -> 0 - mult(0 - x, y) [0 > x] 0.00/0.12 mult(I0, I1) -> mult(I0 - 1, I1) + I1 [I0 > 0] 0.00/0.12 mult(0, I2) -> 0 0.00/0.12 0.00/0.12 The dependency graph for this problem is: 0.00/0.12 0 -> 1 0.00/0.12 1 -> 1 0.00/0.12 Where: 0.00/0.12 0) mult#(x, y) -> mult#(0 - x, y) [0 > x] 0.00/0.12 1) mult#(I0, I1) -> mult#(I0 - 1, I1) [I0 > 0] 0.00/0.12 0.00/0.12 We have the following SCCs. 0.00/0.12 { 1 } 0.00/0.12 0.00/0.12 DP problem for innermost termination. 0.00/0.12 P = 0.00/0.12 mult#(I0, I1) -> mult#(I0 - 1, I1) [I0 > 0] 0.00/0.12 R = 0.00/0.12 mult(x, y) -> 0 - mult(0 - x, y) [0 > x] 0.00/0.12 mult(I0, I1) -> mult(I0 - 1, I1) + I1 [I0 > 0] 0.00/0.12 mult(0, I2) -> 0 0.00/0.12 0.00/0.12 We use the reverse value criterion with the projection function NU: 0.00/0.12 NU[mult#(z1,z2)] = z1 0.00/0.12 0.00/0.12 This gives the following inequalities: 0.00/0.12 I0 > 0 ==> I0 > I0 - 1 with I0 >= 0 0.00/0.12 0.00/0.12 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.10 EOF