3.63/1.77 YES 3.63/1.78 proof of /export/starexec/sandbox/benchmark/theBenchmark.itrs 3.63/1.78 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/1.78 3.63/1.78 3.63/1.78 Termination of the given ITRS could be proven: 3.63/1.78 3.63/1.78 (0) ITRS 3.63/1.78 (1) ITRStoIDPProof [EQUIVALENT, 0 ms] 3.63/1.78 (2) IDP 3.63/1.78 (3) UsableRulesProof [EQUIVALENT, 0 ms] 3.63/1.78 (4) IDP 3.63/1.78 (5) IDPNonInfProof [SOUND, 100 ms] 3.63/1.78 (6) IDP 3.63/1.78 (7) PisEmptyProof [EQUIVALENT, 0 ms] 3.63/1.78 (8) YES 3.63/1.78 3.63/1.78 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (0) 3.63/1.78 Obligation: 3.63/1.78 ITRS problem: 3.63/1.78 3.63/1.78 The following function symbols are pre-defined: 3.63/1.78 <<< 3.63/1.78 & ~ Bwand: (Integer, Integer) -> Integer 3.63/1.78 >= ~ Ge: (Integer, Integer) -> Boolean 3.63/1.78 | ~ Bwor: (Integer, Integer) -> Integer 3.63/1.78 / ~ Div: (Integer, Integer) -> Integer 3.63/1.78 != ~ Neq: (Integer, Integer) -> Boolean 3.63/1.78 && ~ Land: (Boolean, Boolean) -> Boolean 3.63/1.78 ! ~ Lnot: (Boolean) -> Boolean 3.63/1.78 = ~ Eq: (Integer, Integer) -> Boolean 3.63/1.78 <= ~ Le: (Integer, Integer) -> Boolean 3.63/1.78 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.63/1.78 % ~ Mod: (Integer, Integer) -> Integer 3.63/1.78 > ~ Gt: (Integer, Integer) -> Boolean 3.63/1.78 + ~ Add: (Integer, Integer) -> Integer 3.63/1.78 -1 ~ UnaryMinus: (Integer) -> Integer 3.63/1.78 < ~ Lt: (Integer, Integer) -> Boolean 3.63/1.78 || ~ Lor: (Boolean, Boolean) -> Boolean 3.63/1.78 - ~ Sub: (Integer, Integer) -> Integer 3.63/1.78 ~ ~ Bwnot: (Integer) -> Integer 3.63/1.78 * ~ Mul: (Integer, Integer) -> Integer 3.63/1.78 >>> 3.63/1.78 3.63/1.78 The TRS R consists of the following rules: 3.63/1.78 f(x) -> Cond_f(x > x, x) 3.63/1.78 Cond_f(TRUE, x) -> f(x) 3.63/1.78 The set Q consists of the following terms: 3.63/1.78 f(x0) 3.63/1.78 Cond_f(TRUE, x0) 3.63/1.78 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (1) ITRStoIDPProof (EQUIVALENT) 3.63/1.78 Added dependency pairs 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (2) 3.63/1.78 Obligation: 3.63/1.78 IDP problem: 3.63/1.78 The following function symbols are pre-defined: 3.63/1.78 <<< 3.63/1.78 & ~ Bwand: (Integer, Integer) -> Integer 3.63/1.78 >= ~ Ge: (Integer, Integer) -> Boolean 3.63/1.78 | ~ Bwor: (Integer, Integer) -> Integer 3.63/1.78 / ~ Div: (Integer, Integer) -> Integer 3.63/1.78 != ~ Neq: (Integer, Integer) -> Boolean 3.63/1.78 && ~ Land: (Boolean, Boolean) -> Boolean 3.63/1.78 ! ~ Lnot: (Boolean) -> Boolean 3.63/1.78 = ~ Eq: (Integer, Integer) -> Boolean 3.63/1.78 <= ~ Le: (Integer, Integer) -> Boolean 3.63/1.78 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.63/1.78 % ~ Mod: (Integer, Integer) -> Integer 3.63/1.78 > ~ Gt: (Integer, Integer) -> Boolean 3.63/1.78 + ~ Add: (Integer, Integer) -> Integer 3.63/1.78 -1 ~ UnaryMinus: (Integer) -> Integer 3.63/1.78 < ~ Lt: (Integer, Integer) -> Boolean 3.63/1.78 || ~ Lor: (Boolean, Boolean) -> Boolean 3.63/1.78 - ~ Sub: (Integer, Integer) -> Integer 3.63/1.78 ~ ~ Bwnot: (Integer) -> Integer 3.63/1.78 * ~ Mul: (Integer, Integer) -> Integer 3.63/1.78 >>> 3.63/1.78 3.63/1.78 3.63/1.78 The following domains are used: 3.63/1.78 Integer 3.63/1.78 3.63/1.78 The ITRS R consists of the following rules: 3.63/1.78 f(x) -> Cond_f(x > x, x) 3.63/1.78 Cond_f(TRUE, x) -> f(x) 3.63/1.78 3.63/1.78 The integer pair graph contains the following rules and edges: 3.63/1.78 (0): F(x[0]) -> COND_F(x[0] > x[0], x[0]) 3.63/1.78 (1): COND_F(TRUE, x[1]) -> F(x[1]) 3.63/1.78 3.63/1.78 (0) -> (1), if (x[0] > x[0] & x[0] ->^* x[1]) 3.63/1.78 (1) -> (0), if (x[1] ->^* x[0]) 3.63/1.78 3.63/1.78 The set Q consists of the following terms: 3.63/1.78 f(x0) 3.63/1.78 Cond_f(TRUE, x0) 3.63/1.78 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (3) UsableRulesProof (EQUIVALENT) 3.63/1.78 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (4) 3.63/1.78 Obligation: 3.63/1.78 IDP problem: 3.63/1.78 The following function symbols are pre-defined: 3.63/1.78 <<< 3.63/1.78 & ~ Bwand: (Integer, Integer) -> Integer 3.63/1.78 >= ~ Ge: (Integer, Integer) -> Boolean 3.63/1.78 | ~ Bwor: (Integer, Integer) -> Integer 3.63/1.78 / ~ Div: (Integer, Integer) -> Integer 3.63/1.78 != ~ Neq: (Integer, Integer) -> Boolean 3.63/1.78 && ~ Land: (Boolean, Boolean) -> Boolean 3.63/1.78 ! ~ Lnot: (Boolean) -> Boolean 3.63/1.78 = ~ Eq: (Integer, Integer) -> Boolean 3.63/1.78 <= ~ Le: (Integer, Integer) -> Boolean 3.63/1.78 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.63/1.78 % ~ Mod: (Integer, Integer) -> Integer 3.63/1.78 > ~ Gt: (Integer, Integer) -> Boolean 3.63/1.78 + ~ Add: (Integer, Integer) -> Integer 3.63/1.78 -1 ~ UnaryMinus: (Integer) -> Integer 3.63/1.78 < ~ Lt: (Integer, Integer) -> Boolean 3.63/1.78 || ~ Lor: (Boolean, Boolean) -> Boolean 3.63/1.78 - ~ Sub: (Integer, Integer) -> Integer 3.63/1.78 ~ ~ Bwnot: (Integer) -> Integer 3.63/1.78 * ~ Mul: (Integer, Integer) -> Integer 3.63/1.78 >>> 3.63/1.78 3.63/1.78 3.63/1.78 The following domains are used: 3.63/1.78 Integer 3.63/1.78 3.63/1.78 R is empty. 3.63/1.78 3.63/1.78 The integer pair graph contains the following rules and edges: 3.63/1.78 (0): F(x[0]) -> COND_F(x[0] > x[0], x[0]) 3.63/1.78 (1): COND_F(TRUE, x[1]) -> F(x[1]) 3.63/1.78 3.63/1.78 (0) -> (1), if (x[0] > x[0] & x[0] ->^* x[1]) 3.63/1.78 (1) -> (0), if (x[1] ->^* x[0]) 3.63/1.78 3.63/1.78 The set Q consists of the following terms: 3.63/1.78 f(x0) 3.63/1.78 Cond_f(TRUE, x0) 3.63/1.78 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (5) IDPNonInfProof (SOUND) 3.63/1.78 Used the following options for this NonInfProof: 3.63/1.78 3.63/1.78 IDPGPoloSolver: 3.63/1.78 Range: [(-1,2)] 3.63/1.78 IsNat: false 3.63/1.78 Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@11353166 3.63/1.78 Constraint Generator: NonInfConstraintGenerator: 3.63/1.78 PathGenerator: MetricPathGenerator: 3.63/1.78 Max Left Steps: 1 3.63/1.78 Max Right Steps: 1 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 The constraints were generated the following way: 3.63/1.78 3.63/1.78 The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: 3.63/1.78 3.63/1.78 Note that final constraints are written in bold face. 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 For Pair F(x) -> COND_F(>(x, x), x) the following chains were created: 3.63/1.78 *We consider the chain COND_F(TRUE, x[1]) -> F(x[1]), F(x[0]) -> COND_F(>(x[0], x[0]), x[0]), COND_F(TRUE, x[1]) -> F(x[1]) which results in the following constraint: 3.63/1.78 3.63/1.78 (1) (x[1]=x[0] & >(x[0], x[0])=TRUE & x[0]=x[1]1 ==> F(x[0])_>=_NonInfC & F(x[0])_>=_COND_F(>(x[0], x[0]), x[0]) & (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=)) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.63/1.78 3.63/1.78 (2) (>(x[0], x[0])=TRUE ==> F(x[0])_>=_NonInfC & F(x[0])_>=_COND_F(>(x[0], x[0]), x[0]) & (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=)) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.63/1.78 3.63/1.78 (3) ([-1] >= 0 ==> (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=) & [(-1)bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]x[0] >= 0 & [-1 + (-1)bso_10] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.63/1.78 3.63/1.78 (4) ([-1] >= 0 ==> (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=) & [(-1)bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]x[0] >= 0 & [-1 + (-1)bso_10] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.63/1.78 3.63/1.78 (5) ([-1] >= 0 ==> (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=) & [(-1)bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]x[0] >= 0 & [-1 + (-1)bso_10] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 3.63/1.78 3.63/1.78 (6) ([-1] >= 0 ==> (U^Increasing(COND_F(>(x[0], x[0]), x[0])), >=) & [(-1)bni_9] = 0 & [(-1)bni_9 + (-1)Bound*bni_9] >= 0 & [-1 + (-1)bso_10] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We solved constraint (6) using rule (IDP_SMT_SPLIT). 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 For Pair COND_F(TRUE, x) -> F(x) the following chains were created: 3.63/1.78 *We consider the chain F(x[0]) -> COND_F(>(x[0], x[0]), x[0]), COND_F(TRUE, x[1]) -> F(x[1]), F(x[0]) -> COND_F(>(x[0], x[0]), x[0]) which results in the following constraint: 3.63/1.78 3.63/1.78 (1) (>(x[0], x[0])=TRUE & x[0]=x[1] & x[1]=x[0]1 ==> COND_F(TRUE, x[1])_>=_NonInfC & COND_F(TRUE, x[1])_>=_F(x[1]) & (U^Increasing(F(x[1])), >=)) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (1) using rules (III), (IV) which results in the following new constraint: 3.63/1.78 3.63/1.78 (2) (>(x[0], x[0])=TRUE ==> COND_F(TRUE, x[0])_>=_NonInfC & COND_F(TRUE, x[0])_>=_F(x[0]) & (U^Increasing(F(x[1])), >=)) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: 3.63/1.78 3.63/1.78 (3) ([-1] >= 0 ==> (U^Increasing(F(x[1])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: 3.63/1.78 3.63/1.78 (4) ([-1] >= 0 ==> (U^Increasing(F(x[1])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: 3.63/1.78 3.63/1.78 (5) ([-1] >= 0 ==> (U^Increasing(F(x[1])), >=) & [(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x[0] >= 0 & [(-1)bso_12] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint: 3.63/1.78 3.63/1.78 (6) ([-1] >= 0 ==> (U^Increasing(F(x[1])), >=) & [(-1)bni_11] = 0 & [(-1)bni_11 + (-1)Bound*bni_11] >= 0 & [(-1)bso_12] >= 0) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 We solved constraint (6) using rule (IDP_SMT_SPLIT). 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 To summarize, we get the following constraints P__>=_ for the following pairs. 3.63/1.78 3.63/1.78 *F(x) -> COND_F(>(x, x), x) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 *COND_F(TRUE, x) -> F(x) 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 3.63/1.78 The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. 3.63/1.78 3.63/1.78 Using the following integer polynomial ordering the resulting constraints can be solved 3.63/1.78 3.63/1.78 Polynomial interpretation over integers[POLO]: 3.63/1.78 3.63/1.78 POL(TRUE) = 0 3.63/1.78 POL(FALSE) = 0 3.63/1.78 POL(F(x_1)) = [-1] + [-1]x_1 3.63/1.78 POL(COND_F(x_1, x_2)) = [-1] + [-1]x_2 + [-1]x_1 3.63/1.78 POL(>(x_1, x_2)) = [-1] 3.63/1.78 3.63/1.78 3.63/1.78 The following pairs are in P_>: 3.63/1.78 3.63/1.78 3.63/1.78 F(x[0]) -> COND_F(>(x[0], x[0]), x[0]) 3.63/1.78 COND_F(TRUE, x[1]) -> F(x[1]) 3.63/1.78 3.63/1.78 3.63/1.78 The following pairs are in P_bound: 3.63/1.78 3.63/1.78 3.63/1.78 F(x[0]) -> COND_F(>(x[0], x[0]), x[0]) 3.63/1.78 COND_F(TRUE, x[1]) -> F(x[1]) 3.63/1.78 3.63/1.78 3.63/1.78 The following pairs are in P_>=: 3.63/1.78 3.63/1.78 none 3.63/1.78 3.63/1.78 3.63/1.78 There are no usable rules. 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (6) 3.63/1.78 Obligation: 3.63/1.78 IDP problem: 3.63/1.78 The following function symbols are pre-defined: 3.63/1.78 <<< 3.63/1.78 & ~ Bwand: (Integer, Integer) -> Integer 3.63/1.78 >= ~ Ge: (Integer, Integer) -> Boolean 3.63/1.78 | ~ Bwor: (Integer, Integer) -> Integer 3.63/1.78 / ~ Div: (Integer, Integer) -> Integer 3.63/1.78 != ~ Neq: (Integer, Integer) -> Boolean 3.63/1.78 && ~ Land: (Boolean, Boolean) -> Boolean 3.63/1.78 ! ~ Lnot: (Boolean) -> Boolean 3.63/1.78 = ~ Eq: (Integer, Integer) -> Boolean 3.63/1.78 <= ~ Le: (Integer, Integer) -> Boolean 3.63/1.78 ^ ~ Bwxor: (Integer, Integer) -> Integer 3.63/1.78 % ~ Mod: (Integer, Integer) -> Integer 3.63/1.78 > ~ Gt: (Integer, Integer) -> Boolean 3.63/1.78 + ~ Add: (Integer, Integer) -> Integer 3.63/1.78 -1 ~ UnaryMinus: (Integer) -> Integer 3.63/1.78 < ~ Lt: (Integer, Integer) -> Boolean 3.63/1.78 || ~ Lor: (Boolean, Boolean) -> Boolean 3.63/1.78 - ~ Sub: (Integer, Integer) -> Integer 3.63/1.78 ~ ~ Bwnot: (Integer) -> Integer 3.63/1.78 * ~ Mul: (Integer, Integer) -> Integer 3.63/1.78 >>> 3.63/1.78 3.63/1.78 3.63/1.78 The following domains are used: 3.63/1.78 none 3.63/1.78 3.63/1.78 R is empty. 3.63/1.78 3.63/1.78 The integer pair graph is empty. 3.63/1.78 3.63/1.78 The set Q consists of the following terms: 3.63/1.78 f(x0) 3.63/1.78 Cond_f(TRUE, x0) 3.63/1.78 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (7) PisEmptyProof (EQUIVALENT) 3.63/1.78 The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.63/1.78 ---------------------------------------- 3.63/1.78 3.63/1.78 (8) 3.63/1.78 YES 3.67/1.80 EOF