0.00/0.28 YES 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 rand#(I3, y) -> id_dec#(y) [0 > I3] 0.00/0.28 rand#(I4, I5) -> rand#(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 rand#(I4, I5) -> id_inc#(I5) [I4 > 0] 0.00/0.28 random#(I8) -> rand#(I8, 0) 0.00/0.28 R = 0.00/0.28 id_dec(x) -> x - 1 0.00/0.28 id_dec(I0) -> I0 0.00/0.28 id_inc(I1) -> I1 + 1 0.00/0.28 id_inc(I2) -> I2 0.00/0.28 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 rand(I4, I5) -> rand(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 rand(I6, I7) -> I7 [I6 = 0] 0.00/0.28 random(I8) -> rand(I8, 0) 0.00/0.28 0.00/0.28 The dependency graph for this problem is: 0.00/0.28 0 -> 0, 1 0.00/0.28 1 -> 0.00/0.28 2 -> 2, 3 0.00/0.28 3 -> 0.00/0.28 4 -> 0, 1, 2, 3 0.00/0.28 Where: 0.00/0.28 0) rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 1) rand#(I3, y) -> id_dec#(y) [0 > I3] 0.00/0.28 2) rand#(I4, I5) -> rand#(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 3) rand#(I4, I5) -> id_inc#(I5) [I4 > 0] 0.00/0.28 4) random#(I8) -> rand#(I8, 0) 0.00/0.28 0.00/0.28 We have the following SCCs. 0.00/0.28 { 2 } 0.00/0.28 { 0 } 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 rand#(I3, y) -> rand#(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 R = 0.00/0.28 id_dec(x) -> x - 1 0.00/0.28 id_dec(I0) -> I0 0.00/0.28 id_inc(I1) -> I1 + 1 0.00/0.28 id_inc(I2) -> I2 0.00/0.28 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 rand(I4, I5) -> rand(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 rand(I6, I7) -> I7 [I6 = 0] 0.00/0.28 random(I8) -> rand(I8, 0) 0.00/0.28 0.00/0.28 We use the reverse value criterion with the projection function NU: 0.00/0.28 NU[rand#(z1,z2)] = 0 + -1 * z1 0.00/0.28 0.00/0.28 This gives the following inequalities: 0.00/0.28 0 > I3 ==> 0 + -1 * I3 > 0 + -1 * (I3 + 1) with 0 + -1 * I3 >= 0 0.00/0.28 0.00/0.28 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/0.28 0.00/0.28 DP problem for innermost termination. 0.00/0.28 P = 0.00/0.28 rand#(I4, I5) -> rand#(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 R = 0.00/0.28 id_dec(x) -> x - 1 0.00/0.28 id_dec(I0) -> I0 0.00/0.28 id_inc(I1) -> I1 + 1 0.00/0.28 id_inc(I2) -> I2 0.00/0.28 rand(I3, y) -> rand(I3 + 1, id_dec(y)) [0 > I3] 0.00/0.28 rand(I4, I5) -> rand(I4 - 1, id_inc(I5)) [I4 > 0] 0.00/0.28 rand(I6, I7) -> I7 [I6 = 0] 0.00/0.28 random(I8) -> rand(I8, 0) 0.00/0.28 0.00/0.28 We use the reverse value criterion with the projection function NU: 0.00/0.28 NU[rand#(z1,z2)] = z1 0.00/0.28 0.00/0.28 This gives the following inequalities: 0.00/0.28 I4 > 0 ==> I4 > I4 - 1 with I4 >= 0 0.00/0.28 0.00/0.28 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.26 EOF