0.00/0.15 YES 0.00/0.15 0.00/0.15 DP problem for innermost termination. 0.00/0.15 P = 0.00/0.15 f#(true, x, y) -> f#(x > y, x, y + 1) 0.00/0.15 R = 0.00/0.15 f(true, x, y) -> f(x > y, x, y + 1) 0.00/0.15 0.00/0.15 This problem is converted using chaining, where edges between chained DPs are removed. 0.00/0.15 0.00/0.15 DP problem for innermost termination. 0.00/0.15 P = 0.00/0.15 f#(true, x, y) -> f_1#(x, y) 0.00/0.15 f_1#(x, y) -> f#(x > y, x, y + 1) 0.00/0.15 f_1#(x, y) -> f_1#(x, y + 1) [x > y] 0.00/0.15 R = 0.00/0.15 f(true, x, y) -> f(x > y, x, y + 1) 0.00/0.15 0.00/0.15 The dependency graph for this problem is: 0.00/0.15 0 -> 2, 1 0.00/0.15 1 -> 0.00/0.15 2 -> 2, 1 0.00/0.15 Where: 0.00/0.15 0) f#(true, x, y) -> f_1#(x, y) 0.00/0.15 1) f_1#(x, y) -> f#(x > y, x, y + 1) 0.00/0.15 2) f_1#(x, y) -> f_1#(x, y + 1) [x > y] 0.00/0.15 0.00/0.15 We have the following SCCs. 0.00/0.15 { 2 } 0.00/0.15 0.00/0.15 DP problem for innermost termination. 0.00/0.15 P = 0.00/0.15 f_1#(x, y) -> f_1#(x, y + 1) [x > y] 0.00/0.15 R = 0.00/0.15 f(true, x, y) -> f(x > y, x, y + 1) 0.00/0.15 0.00/0.15 We use the reverse value criterion with the projection function NU: 0.00/0.15 NU[f_1#(z1,z2)] = z1 + -1 * z2 0.00/0.15 0.00/0.15 This gives the following inequalities: 0.00/0.15 x > y ==> x + -1 * y > x + -1 * (y + 1) with x + -1 * y >= 0 0.00/0.15 0.00/0.15 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. 0.00/3.13 EOF