3.11/1.54 YES 3.11/1.55 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.11/1.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.11/1.55 3.11/1.55 3.11/1.55 Termination of the given CSR could be proven: 3.11/1.55 3.11/1.55 (0) CSR 3.11/1.55 (1) CSRInnermostProof [EQUIVALENT, 0 ms] 3.11/1.55 (2) CSR 3.11/1.55 (3) CSDependencyPairsProof [EQUIVALENT, 18 ms] 3.11/1.55 (4) QCSDP 3.11/1.55 (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.11/1.55 (6) AND 3.11/1.55 (7) QCSDP 3.11/1.55 (8) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.11/1.55 (9) QCSDP 3.11/1.55 (10) PIsEmptyProof [EQUIVALENT, 0 ms] 3.11/1.55 (11) YES 3.11/1.55 (12) QCSDP 3.11/1.55 (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.11/1.55 (14) QCSDP 3.11/1.55 (15) PIsEmptyProof [EQUIVALENT, 0 ms] 3.11/1.55 (16) YES 3.11/1.55 (17) QCSDP 3.11/1.55 (18) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.11/1.55 (19) QCSDP 3.11/1.55 (20) PIsEmptyProof [EQUIVALENT, 0 ms] 3.11/1.55 (21) YES 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (0) 3.11/1.55 Obligation: 3.11/1.55 Context-sensitive rewrite system: 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The replacement map contains the following entries: 3.11/1.55 3.11/1.55 fib: {1} 3.11/1.55 sel: {1, 2} 3.11/1.55 fib1: {1, 2} 3.11/1.55 s: {1} 3.11/1.55 0: empty set 3.11/1.55 cons: {1} 3.11/1.55 add: {1, 2} 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (1) CSRInnermostProof (EQUIVALENT) 3.11/1.55 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (2) 3.11/1.55 Obligation: 3.11/1.55 Context-sensitive rewrite system: 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The replacement map contains the following entries: 3.11/1.55 3.11/1.55 fib: {1} 3.11/1.55 sel: {1, 2} 3.11/1.55 fib1: {1, 2} 3.11/1.55 s: {1} 3.11/1.55 0: empty set 3.11/1.55 cons: {1} 3.11/1.55 add: {1, 2} 3.11/1.55 3.11/1.55 3.11/1.55 Innermost Strategy. 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (3) CSDependencyPairsProof (EQUIVALENT) 3.11/1.55 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (4) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, SEL_2, FIB_1, FIB1_2, ADD_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 The symbols in {U_1} are not replacing on any position. 3.11/1.55 3.11/1.55 The ordinary context-sensitive dependency pairs DP_o are: 3.11/1.55 FIB(N) -> SEL(N, fib1(s(0), s(0))) 3.11/1.55 FIB(N) -> FIB1(s(0), s(0)) 3.11/1.55 ADD(s(X), Y) -> ADD(X, Y) 3.11/1.55 SEL(s(N), cons(X, XS)) -> SEL(N, XS) 3.11/1.55 3.11/1.55 The collapsing dependency pairs are DP_c: 3.11/1.55 SEL(s(N), cons(X, XS)) -> XS 3.11/1.55 3.11/1.55 3.11/1.55 The hidden terms of R are: 3.11/1.55 3.11/1.55 fib1(x0, add(x1, x0)) 3.11/1.55 add(x0, x1) 3.11/1.55 3.11/1.55 Every hiding context is built from: 3.11/1.55 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@224700b4 3.11/1.55 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@5d4bf07d 3.11/1.55 3.11/1.55 Hence, the new unhiding pairs DP_u are : 3.11/1.55 SEL(s(N), cons(X, XS)) -> U(XS) 3.11/1.55 U(add(x_0, x_1)) -> U(x_0) 3.11/1.55 U(add(x_0, x_1)) -> U(x_1) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_0) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_1) 3.11/1.55 U(fib1(x0, add(x1, x0))) -> FIB1(x0, add(x1, x0)) 3.11/1.55 U(add(x0, x1)) -> ADD(x0, x1) 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (5) QCSDependencyGraphProof (EQUIVALENT) 3.11/1.55 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 4 less nodes. 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (6) 3.11/1.55 Complex Obligation (AND) 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (7) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, ADD_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 3.11/1.55 ADD(s(X), Y) -> ADD(X, Y) 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (8) QCSDPSubtermProof (EQUIVALENT) 3.11/1.55 We use the subterm processor [DA_EMMES]. 3.11/1.55 3.11/1.55 3.11/1.55 The following pairs can be oriented strictly and are deleted. 3.11/1.55 3.11/1.55 ADD(s(X), Y) -> ADD(X, Y) 3.11/1.55 The remaining pairs can at least be oriented weakly. 3.11/1.55 none 3.11/1.55 Used ordering: Combined order from the following AFS and order. 3.11/1.55 ADD(x1, x2) = x1 3.11/1.55 3.11/1.55 3.11/1.55 Subterm Order 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (9) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 none 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (10) PIsEmptyProof (EQUIVALENT) 3.11/1.55 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (11) 3.11/1.55 YES 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (12) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 The symbols in {U_1} are not replacing on any position. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 3.11/1.55 U(add(x_0, x_1)) -> U(x_0) 3.11/1.55 U(add(x_0, x_1)) -> U(x_1) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_0) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_1) 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (13) QCSDPSubtermProof (EQUIVALENT) 3.11/1.55 We use the subterm processor [DA_EMMES]. 3.11/1.55 3.11/1.55 3.11/1.55 The following pairs can be oriented strictly and are deleted. 3.11/1.55 3.11/1.55 U(add(x_0, x_1)) -> U(x_0) 3.11/1.55 U(add(x_0, x_1)) -> U(x_1) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_0) 3.11/1.55 U(fib1(x_0, x_1)) -> U(x_1) 3.11/1.55 The remaining pairs can at least be oriented weakly. 3.11/1.55 none 3.11/1.55 Used ordering: Combined order from the following AFS and order. 3.11/1.55 U(x1) = x1 3.11/1.55 3.11/1.55 3.11/1.55 Subterm Order 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (14) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 none 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (15) PIsEmptyProof (EQUIVALENT) 3.11/1.55 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (16) 3.11/1.55 YES 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (17) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2, SEL_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 3.11/1.55 SEL(s(N), cons(X, XS)) -> SEL(N, XS) 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (18) QCSDPSubtermProof (EQUIVALENT) 3.11/1.55 We use the subterm processor [DA_EMMES]. 3.11/1.55 3.11/1.55 3.11/1.55 The following pairs can be oriented strictly and are deleted. 3.11/1.55 3.11/1.55 SEL(s(N), cons(X, XS)) -> SEL(N, XS) 3.11/1.55 The remaining pairs can at least be oriented weakly. 3.11/1.55 none 3.11/1.55 Used ordering: Combined order from the following AFS and order. 3.11/1.55 SEL(x1, x2) = x1 3.11/1.55 3.11/1.55 3.11/1.55 Subterm Order 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (19) 3.11/1.55 Obligation: 3.11/1.55 Q-restricted context-sensitive dependency pair problem: 3.11/1.55 The symbols in {fib_1, sel_2, fib1_2, s_1, add_2} are replacing on all positions. 3.11/1.55 For all symbols f in {cons_2} we have mu(f) = {1}. 3.11/1.55 3.11/1.55 The TRS P consists of the following rules: 3.11/1.55 none 3.11/1.55 3.11/1.55 The TRS R consists of the following rules: 3.11/1.55 3.11/1.55 fib(N) -> sel(N, fib1(s(0), s(0))) 3.11/1.55 fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) 3.11/1.55 add(0, X) -> X 3.11/1.55 add(s(X), Y) -> s(add(X, Y)) 3.11/1.55 sel(0, cons(X, XS)) -> X 3.11/1.55 sel(s(N), cons(X, XS)) -> sel(N, XS) 3.11/1.55 3.11/1.55 The set Q consists of the following terms: 3.11/1.55 3.11/1.55 fib(x0) 3.11/1.55 fib1(x0, x1) 3.11/1.55 add(0, x0) 3.11/1.55 add(s(x0), x1) 3.11/1.55 sel(0, cons(x0, x1)) 3.11/1.55 sel(s(x0), cons(x1, x2)) 3.11/1.55 3.11/1.55 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (20) PIsEmptyProof (EQUIVALENT) 3.11/1.55 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.11/1.55 ---------------------------------------- 3.11/1.55 3.11/1.55 (21) 3.11/1.55 YES 3.34/1.58 EOF