3.53/1.59 YES 3.53/1.60 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.53/1.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.53/1.60 3.53/1.60 3.53/1.60 Termination of the given CSR could be proven: 3.53/1.60 3.53/1.60 (0) CSR 3.53/1.60 (1) CSRInnermostProof [EQUIVALENT, 0 ms] 3.53/1.60 (2) CSR 3.53/1.60 (3) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.53/1.60 (4) QCSDP 3.53/1.60 (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.53/1.60 (6) AND 3.53/1.60 (7) QCSDP 3.53/1.60 (8) QCSDPSubtermProof [EQUIVALENT, 16 ms] 3.53/1.60 (9) QCSDP 3.53/1.60 (10) PIsEmptyProof [EQUIVALENT, 0 ms] 3.53/1.60 (11) YES 3.53/1.60 (12) QCSDP 3.53/1.60 (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.53/1.60 (14) QCSDP 3.53/1.60 (15) PIsEmptyProof [EQUIVALENT, 0 ms] 3.53/1.60 (16) YES 3.53/1.60 (17) QCSDP 3.53/1.60 (18) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.53/1.60 (19) QCSDP 3.53/1.60 (20) PIsEmptyProof [EQUIVALENT, 0 ms] 3.53/1.60 (21) YES 3.53/1.60 (22) QCSDP 3.53/1.60 (23) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.53/1.60 (24) QCSDP 3.53/1.60 (25) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.53/1.60 (26) TRUE 3.53/1.60 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (0) 3.53/1.60 Obligation: 3.53/1.60 Context-sensitive rewrite system: 3.53/1.60 The TRS R consists of the following rules: 3.53/1.60 3.53/1.60 from(X) -> cons(X, from(s(X))) 3.53/1.60 2ndspos(0, Z) -> rnil 3.53/1.60 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.60 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.60 2ndsneg(0, Z) -> rnil 3.53/1.60 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.60 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.60 pi(X) -> 2ndspos(X, from(0)) 3.53/1.60 plus(0, Y) -> Y 3.53/1.60 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.60 times(0, Y) -> 0 3.53/1.60 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.60 square(X) -> times(X, X) 3.53/1.60 3.53/1.60 The replacement map contains the following entries: 3.53/1.60 3.53/1.60 from: {1} 3.53/1.60 cons: {1} 3.53/1.60 s: {1} 3.53/1.60 2ndspos: {1, 2} 3.53/1.60 0: empty set 3.53/1.60 rnil: empty set 3.53/1.60 cons2: {2} 3.53/1.60 rcons: {1, 2} 3.53/1.60 posrecip: {1} 3.53/1.60 2ndsneg: {1, 2} 3.53/1.60 negrecip: {1} 3.53/1.60 pi: {1} 3.53/1.60 plus: {1, 2} 3.53/1.60 times: {1, 2} 3.53/1.60 square: {1} 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (1) CSRInnermostProof (EQUIVALENT) 3.53/1.60 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (2) 3.53/1.60 Obligation: 3.53/1.60 Context-sensitive rewrite system: 3.53/1.60 The TRS R consists of the following rules: 3.53/1.60 3.53/1.60 from(X) -> cons(X, from(s(X))) 3.53/1.60 2ndspos(0, Z) -> rnil 3.53/1.60 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.60 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.60 2ndsneg(0, Z) -> rnil 3.53/1.60 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.60 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.60 pi(X) -> 2ndspos(X, from(0)) 3.53/1.60 plus(0, Y) -> Y 3.53/1.60 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.60 times(0, Y) -> 0 3.53/1.60 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.60 square(X) -> times(X, X) 3.53/1.60 3.53/1.60 The replacement map contains the following entries: 3.53/1.60 3.53/1.60 from: {1} 3.53/1.60 cons: {1} 3.53/1.60 s: {1} 3.53/1.60 2ndspos: {1, 2} 3.53/1.60 0: empty set 3.53/1.60 rnil: empty set 3.53/1.60 cons2: {2} 3.53/1.60 rcons: {1, 2} 3.53/1.60 posrecip: {1} 3.53/1.60 2ndsneg: {1, 2} 3.53/1.60 negrecip: {1} 3.53/1.60 pi: {1} 3.53/1.60 plus: {1, 2} 3.53/1.60 times: {1, 2} 3.53/1.60 square: {1} 3.53/1.60 3.53/1.60 3.53/1.60 Innermost Strategy. 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (3) CSDependencyPairsProof (EQUIVALENT) 3.53/1.60 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (4) 3.53/1.60 Obligation: 3.53/1.60 Q-restricted context-sensitive dependency pair problem: 3.53/1.60 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSPOS_2, 2NDSNEG_2, PI_1, FROM_1, PLUS_2, TIMES_2, SQUARE_1} are replacing on all positions. 3.53/1.60 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.60 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.60 The symbols in {U_1} are not replacing on any position. 3.53/1.60 3.53/1.60 The ordinary context-sensitive dependency pairs DP_o are: 3.53/1.60 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) 3.53/1.60 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.53/1.60 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 3.53/1.60 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.53/1.60 PI(X) -> 2NDSPOS(X, from(0)) 3.53/1.60 PI(X) -> FROM(0) 3.53/1.60 PLUS(s(X), Y) -> PLUS(X, Y) 3.53/1.60 TIMES(s(X), Y) -> PLUS(Y, times(X, Y)) 3.53/1.60 TIMES(s(X), Y) -> TIMES(X, Y) 3.53/1.60 SQUARE(X) -> TIMES(X, X) 3.53/1.60 3.53/1.60 The collapsing dependency pairs are DP_c: 3.53/1.60 2NDSPOS(s(N), cons(X, Z)) -> Z 3.53/1.60 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> Z 3.53/1.60 2NDSNEG(s(N), cons(X, Z)) -> Z 3.53/1.60 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> Z 3.53/1.60 3.53/1.60 3.53/1.60 The hidden terms of R are: 3.53/1.60 3.53/1.60 from(s(x0)) 3.53/1.60 3.53/1.60 Every hiding context is built from: 3.53/1.60 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@db8adb4 3.53/1.60 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@438a962b 3.53/1.60 3.53/1.60 Hence, the new unhiding pairs DP_u are : 3.53/1.60 2NDSPOS(s(N), cons(X, Z)) -> U(Z) 3.53/1.60 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> U(Z) 3.53/1.60 2NDSNEG(s(N), cons(X, Z)) -> U(Z) 3.53/1.60 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> U(Z) 3.53/1.60 U(s(x_0)) -> U(x_0) 3.53/1.60 U(from(x_0)) -> U(x_0) 3.53/1.60 U(from(s(x0))) -> FROM(s(x0)) 3.53/1.60 3.53/1.60 The TRS R consists of the following rules: 3.53/1.60 3.53/1.60 from(X) -> cons(X, from(s(X))) 3.53/1.60 2ndspos(0, Z) -> rnil 3.53/1.60 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.60 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.60 2ndsneg(0, Z) -> rnil 3.53/1.60 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.60 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.60 pi(X) -> 2ndspos(X, from(0)) 3.53/1.60 plus(0, Y) -> Y 3.53/1.60 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.60 times(0, Y) -> 0 3.53/1.60 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.60 square(X) -> times(X, X) 3.53/1.60 3.53/1.60 The set Q consists of the following terms: 3.53/1.60 3.53/1.60 from(x0) 3.53/1.60 2ndspos(0, x0) 3.53/1.60 2ndspos(s(x0), cons(x1, x2)) 3.53/1.60 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.60 2ndsneg(0, x0) 3.53/1.60 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.60 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.60 pi(x0) 3.53/1.60 plus(0, x0) 3.53/1.60 plus(s(x0), x1) 3.53/1.60 times(0, x0) 3.53/1.60 times(s(x0), x1) 3.53/1.60 square(x0) 3.53/1.60 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (5) QCSDependencyGraphProof (EQUIVALENT) 3.53/1.60 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 4 SCCs with 8 less nodes. 3.53/1.60 The rules 2NDSPOS(s(z0), cons(z1, z2)) -> 2NDSPOS(s(z0), cons2(z1, z2)) and 2NDSPOS(s(x0), cons(x1, x2)) -> 2NDSPOS(s(x0), cons2(x1, x2)) form no chain, because ECap^mu(2NDSPOS(s(z0), cons2(z1, z2))) = 2NDSPOS(s(z0), cons2(z1, x_1)) does not unify with 2NDSPOS(s(x0), cons(x1, x2)). The rules 2NDSPOS(s(z0), cons(z1, z2)) -> 2NDSPOS(s(z0), cons2(z1, z2)) and 2NDSPOS(s(x0), cons(x1, x2)) -> U(x2) form no chain, because ECap^mu(2NDSPOS(s(z0), cons2(z1, z2))) = 2NDSPOS(s(z0), cons2(z1, x_1)) does not unify with 2NDSPOS(s(x0), cons(x1, x2)). The rules 2NDSNEG(s(z0), cons(z1, z2)) -> 2NDSNEG(s(z0), cons2(z1, z2)) and 2NDSNEG(s(x0), cons(x1, x2)) -> 2NDSNEG(s(x0), cons2(x1, x2)) form no chain, because ECap^mu(2NDSNEG(s(z0), cons2(z1, z2))) = 2NDSNEG(s(z0), cons2(z1, x_1)) does not unify with 2NDSNEG(s(x0), cons(x1, x2)). The rules 2NDSNEG(s(z0), cons(z1, z2)) -> 2NDSNEG(s(z0), cons2(z1, z2)) and 2NDSNEG(s(x0), cons(x1, x2)) -> U(x2) form no chain, because ECap^mu(2NDSNEG(s(z0), cons2(z1, z2))) = 2NDSNEG(s(z0), cons2(z1, x_1)) does not unify with 2NDSNEG(s(x0), cons(x1, x2)). The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons2(z1, cons(z2, z3))) -> 2NDSNEG(z0, z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons2(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons2(z1, x_3)) does not unify with 2NDSPOS(x0, from(0)). 3.53/1.60 R' = 3.53/1.60 ( cons(X, from(s(X))), from(X)) 3.53/1.60 3.53/1.60 3.53/1.60 The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons2(z1, cons(z2, z3))) -> U(z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons2(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons2(z1, x_3)) does not unify with 2NDSPOS(x0, from(0)). 3.53/1.60 R' = 3.53/1.60 ( cons(X, from(s(X))), from(X)) 3.53/1.60 3.53/1.60 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (6) 3.53/1.60 Complex Obligation (AND) 3.53/1.60 3.53/1.60 ---------------------------------------- 3.53/1.60 3.53/1.60 (7) 3.53/1.60 Obligation: 3.53/1.60 Q-restricted context-sensitive dependency pair problem: 3.53/1.60 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.53/1.60 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.60 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.60 The symbols in {U_1} are not replacing on any position. 3.53/1.60 3.53/1.60 The TRS P consists of the following rules: 3.53/1.60 3.53/1.60 U(s(x_0)) -> U(x_0) 3.53/1.60 U(from(x_0)) -> U(x_0) 3.53/1.60 3.53/1.60 The TRS R consists of the following rules: 3.53/1.60 3.53/1.60 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (8) QCSDPSubtermProof (EQUIVALENT) 3.53/1.61 We use the subterm processor [DA_EMMES]. 3.53/1.61 3.53/1.61 3.53/1.61 The following pairs can be oriented strictly and are deleted. 3.53/1.61 3.53/1.61 U(s(x_0)) -> U(x_0) 3.53/1.61 U(from(x_0)) -> U(x_0) 3.53/1.61 The remaining pairs can at least be oriented weakly. 3.53/1.61 none 3.53/1.61 Used ordering: Combined order from the following AFS and order. 3.53/1.61 U(x1) = x1 3.53/1.61 3.53/1.61 3.53/1.61 Subterm Order 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (9) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 none 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (10) PIsEmptyProof (EQUIVALENT) 3.53/1.61 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (11) 3.53/1.61 YES 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (12) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, PLUS_2} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 3.53/1.61 PLUS(s(X), Y) -> PLUS(X, Y) 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (13) QCSDPSubtermProof (EQUIVALENT) 3.53/1.61 We use the subterm processor [DA_EMMES]. 3.53/1.61 3.53/1.61 3.53/1.61 The following pairs can be oriented strictly and are deleted. 3.53/1.61 3.53/1.61 PLUS(s(X), Y) -> PLUS(X, Y) 3.53/1.61 The remaining pairs can at least be oriented weakly. 3.53/1.61 none 3.53/1.61 Used ordering: Combined order from the following AFS and order. 3.53/1.61 PLUS(x1, x2) = x1 3.53/1.61 3.53/1.61 3.53/1.61 Subterm Order 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (14) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 none 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (15) PIsEmptyProof (EQUIVALENT) 3.53/1.61 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (16) 3.53/1.61 YES 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (17) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, TIMES_2} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 3.53/1.61 TIMES(s(X), Y) -> TIMES(X, Y) 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (18) QCSDPSubtermProof (EQUIVALENT) 3.53/1.61 We use the subterm processor [DA_EMMES]. 3.53/1.61 3.53/1.61 3.53/1.61 The following pairs can be oriented strictly and are deleted. 3.53/1.61 3.53/1.61 TIMES(s(X), Y) -> TIMES(X, Y) 3.53/1.61 The remaining pairs can at least be oriented weakly. 3.53/1.61 none 3.53/1.61 Used ordering: Combined order from the following AFS and order. 3.53/1.61 TIMES(x1, x2) = x1 3.53/1.61 3.53/1.61 3.53/1.61 Subterm Order 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (19) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 none 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (20) PIsEmptyProof (EQUIVALENT) 3.53/1.61 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (21) 3.53/1.61 YES 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (22) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 3.53/1.61 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.53/1.61 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 3.53/1.61 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.53/1.61 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (23) QCSDPSubtermProof (EQUIVALENT) 3.53/1.61 We use the subterm processor [DA_EMMES]. 3.53/1.61 3.53/1.61 3.53/1.61 The following pairs can be oriented strictly and are deleted. 3.53/1.61 3.53/1.61 2NDSPOS(s(N), cons2(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.53/1.61 2NDSNEG(s(N), cons2(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.53/1.61 The remaining pairs can at least be oriented weakly. 3.53/1.61 3.53/1.61 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 3.53/1.61 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) 3.53/1.61 Used ordering: Combined order from the following AFS and order. 3.53/1.61 2NDSNEG(x1, x2) = x1 3.53/1.61 3.53/1.61 2NDSPOS(x1, x2) = x1 3.53/1.61 3.53/1.61 3.53/1.61 Subterm Order 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (24) 3.53/1.61 Obligation: 3.53/1.61 Q-restricted context-sensitive dependency pair problem: 3.53/1.61 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2} are replacing on all positions. 3.53/1.61 For all symbols f in {cons_2} we have mu(f) = {1}. 3.53/1.61 For all symbols f in {cons2_2} we have mu(f) = {2}. 3.53/1.61 3.53/1.61 The TRS P consists of the following rules: 3.53/1.61 3.53/1.61 2NDSNEG(s(N), cons(X, Z)) -> 2NDSNEG(s(N), cons2(X, Z)) 3.53/1.61 2NDSPOS(s(N), cons(X, Z)) -> 2NDSPOS(s(N), cons2(X, Z)) 3.53/1.61 3.53/1.61 The TRS R consists of the following rules: 3.53/1.61 3.53/1.61 from(X) -> cons(X, from(s(X))) 3.53/1.61 2ndspos(0, Z) -> rnil 3.53/1.61 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 3.53/1.61 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.53/1.61 2ndsneg(0, Z) -> rnil 3.53/1.61 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 3.53/1.61 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.53/1.61 pi(X) -> 2ndspos(X, from(0)) 3.53/1.61 plus(0, Y) -> Y 3.53/1.61 plus(s(X), Y) -> s(plus(X, Y)) 3.53/1.61 times(0, Y) -> 0 3.53/1.61 times(s(X), Y) -> plus(Y, times(X, Y)) 3.53/1.61 square(X) -> times(X, X) 3.53/1.61 3.53/1.61 The set Q consists of the following terms: 3.53/1.61 3.53/1.61 from(x0) 3.53/1.61 2ndspos(0, x0) 3.53/1.61 2ndspos(s(x0), cons(x1, x2)) 3.53/1.61 2ndspos(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 2ndsneg(0, x0) 3.53/1.61 2ndsneg(s(x0), cons(x1, x2)) 3.53/1.61 2ndsneg(s(x0), cons2(x1, cons(x2, x3))) 3.53/1.61 pi(x0) 3.53/1.61 plus(0, x0) 3.53/1.61 plus(s(x0), x1) 3.53/1.61 times(0, x0) 3.53/1.61 times(s(x0), x1) 3.53/1.61 square(x0) 3.53/1.61 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (25) QCSDependencyGraphProof (EQUIVALENT) 3.53/1.61 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 2 less nodes. 3.53/1.61 3.53/1.61 ---------------------------------------- 3.53/1.61 3.53/1.61 (26) 3.53/1.61 TRUE 3.80/1.63 EOF