3.44/1.53 YES 3.44/1.54 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.44/1.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.44/1.54 3.44/1.54 3.44/1.54 Termination of the given CSR could be proven: 3.44/1.54 3.44/1.54 (0) CSR 3.44/1.54 (1) CSRInnermostProof [EQUIVALENT, 0 ms] 3.44/1.54 (2) CSR 3.44/1.54 (3) CSDependencyPairsProof [EQUIVALENT, 11 ms] 3.44/1.54 (4) QCSDP 3.44/1.54 (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.44/1.54 (6) AND 3.44/1.54 (7) QCSDP 3.44/1.54 (8) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.44/1.54 (9) QCSDP 3.44/1.54 (10) PIsEmptyProof [EQUIVALENT, 0 ms] 3.44/1.54 (11) YES 3.44/1.54 (12) QCSDP 3.44/1.54 (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.44/1.54 (14) QCSDP 3.44/1.54 (15) PIsEmptyProof [EQUIVALENT, 0 ms] 3.44/1.54 (16) YES 3.44/1.54 (17) QCSDP 3.44/1.54 (18) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.44/1.54 (19) QCSDP 3.44/1.54 (20) PIsEmptyProof [EQUIVALENT, 0 ms] 3.44/1.54 (21) YES 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (0) 3.44/1.54 Obligation: 3.44/1.54 Context-sensitive rewrite system: 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The replacement map contains the following entries: 3.44/1.54 3.44/1.54 terms: {1} 3.44/1.54 cons: {1} 3.44/1.54 recip: {1} 3.44/1.54 sqr: {1} 3.44/1.54 s: {1} 3.44/1.54 0: empty set 3.44/1.54 add: {1, 2} 3.44/1.54 dbl: {1} 3.44/1.54 first: {1, 2} 3.44/1.54 nil: empty set 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (1) CSRInnermostProof (EQUIVALENT) 3.44/1.54 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (2) 3.44/1.54 Obligation: 3.44/1.54 Context-sensitive rewrite system: 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The replacement map contains the following entries: 3.44/1.54 3.44/1.54 terms: {1} 3.44/1.54 cons: {1} 3.44/1.54 recip: {1} 3.44/1.54 sqr: {1} 3.44/1.54 s: {1} 3.44/1.54 0: empty set 3.44/1.54 add: {1, 2} 3.44/1.54 dbl: {1} 3.44/1.54 first: {1, 2} 3.44/1.54 nil: empty set 3.44/1.54 3.44/1.54 3.44/1.54 Innermost Strategy. 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (3) CSDependencyPairsProof (EQUIVALENT) 3.44/1.54 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (4) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1, TERMS_1, ADD_2, DBL_1} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The ordinary context-sensitive dependency pairs DP_o are: 3.44/1.54 TERMS(N) -> SQR(N) 3.44/1.54 SQR(s(X)) -> ADD(sqr(X), dbl(X)) 3.44/1.54 SQR(s(X)) -> SQR(X) 3.44/1.54 SQR(s(X)) -> DBL(X) 3.44/1.54 DBL(s(X)) -> DBL(X) 3.44/1.54 ADD(s(X), Y) -> ADD(X, Y) 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (5) QCSDependencyGraphProof (EQUIVALENT) 3.44/1.54 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 3 less nodes. 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (6) 3.44/1.54 Complex Obligation (AND) 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (7) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, DBL_1} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 3.44/1.54 DBL(s(X)) -> DBL(X) 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (8) QCSDPSubtermProof (EQUIVALENT) 3.44/1.54 We use the subterm processor [DA_EMMES]. 3.44/1.54 3.44/1.54 3.44/1.54 The following pairs can be oriented strictly and are deleted. 3.44/1.54 3.44/1.54 DBL(s(X)) -> DBL(X) 3.44/1.54 The remaining pairs can at least be oriented weakly. 3.44/1.54 none 3.44/1.54 Used ordering: Combined order from the following AFS and order. 3.44/1.54 DBL(x1) = x1 3.44/1.54 3.44/1.54 3.44/1.54 Subterm Order 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (9) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 none 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (10) PIsEmptyProof (EQUIVALENT) 3.44/1.54 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (11) 3.44/1.54 YES 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (12) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, ADD_2} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 3.44/1.54 ADD(s(X), Y) -> ADD(X, Y) 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (13) QCSDPSubtermProof (EQUIVALENT) 3.44/1.54 We use the subterm processor [DA_EMMES]. 3.44/1.54 3.44/1.54 3.44/1.54 The following pairs can be oriented strictly and are deleted. 3.44/1.54 3.44/1.54 ADD(s(X), Y) -> ADD(X, Y) 3.44/1.54 The remaining pairs can at least be oriented weakly. 3.44/1.54 none 3.44/1.54 Used ordering: Combined order from the following AFS and order. 3.44/1.54 ADD(x1, x2) = x1 3.44/1.54 3.44/1.54 3.44/1.54 Subterm Order 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (14) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 none 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (15) PIsEmptyProof (EQUIVALENT) 3.44/1.54 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (16) 3.44/1.54 YES 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (17) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 3.44/1.54 SQR(s(X)) -> SQR(X) 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (18) QCSDPSubtermProof (EQUIVALENT) 3.44/1.54 We use the subterm processor [DA_EMMES]. 3.44/1.54 3.44/1.54 3.44/1.54 The following pairs can be oriented strictly and are deleted. 3.44/1.54 3.44/1.54 SQR(s(X)) -> SQR(X) 3.44/1.54 The remaining pairs can at least be oriented weakly. 3.44/1.54 none 3.44/1.54 Used ordering: Combined order from the following AFS and order. 3.44/1.54 SQR(x1) = x1 3.44/1.54 3.44/1.54 3.44/1.54 Subterm Order 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (19) 3.44/1.54 Obligation: 3.44/1.54 Q-restricted context-sensitive dependency pair problem: 3.44/1.54 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.44/1.54 For all symbols f in {cons_2} we have mu(f) = {1}. 3.44/1.54 3.44/1.54 The TRS P consists of the following rules: 3.44/1.54 none 3.44/1.54 3.44/1.54 The TRS R consists of the following rules: 3.44/1.54 3.44/1.54 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.44/1.54 sqr(0) -> 0 3.44/1.54 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.44/1.54 dbl(0) -> 0 3.44/1.54 dbl(s(X)) -> s(s(dbl(X))) 3.44/1.54 add(0, X) -> X 3.44/1.54 add(s(X), Y) -> s(add(X, Y)) 3.44/1.54 first(0, X) -> nil 3.44/1.54 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.44/1.54 3.44/1.54 The set Q consists of the following terms: 3.44/1.54 3.44/1.54 terms(x0) 3.44/1.54 sqr(0) 3.44/1.54 sqr(s(x0)) 3.44/1.54 dbl(0) 3.44/1.54 dbl(s(x0)) 3.44/1.54 add(0, x0) 3.44/1.54 add(s(x0), x1) 3.44/1.54 first(0, x0) 3.44/1.54 first(s(x0), cons(x1, x2)) 3.44/1.54 3.44/1.54 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (20) PIsEmptyProof (EQUIVALENT) 3.44/1.54 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.44/1.54 ---------------------------------------- 3.44/1.54 3.44/1.54 (21) 3.44/1.54 YES 3.44/1.57 EOF