3.04/1.54 YES 3.04/1.56 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.04/1.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.04/1.56 3.04/1.56 3.04/1.56 Termination of the given CSR could be proven: 3.04/1.56 3.04/1.56 (0) CSR 3.04/1.56 (1) CSRInnermostProof [EQUIVALENT, 1 ms] 3.04/1.56 (2) CSR 3.04/1.56 (3) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.04/1.56 (4) QCSDP 3.04/1.56 (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.04/1.56 (6) AND 3.04/1.56 (7) QCSDP 3.04/1.56 (8) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.04/1.56 (9) QCSDP 3.04/1.56 (10) PIsEmptyProof [EQUIVALENT, 0 ms] 3.04/1.56 (11) YES 3.04/1.56 (12) QCSDP 3.04/1.56 (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.04/1.56 (14) QCSDP 3.04/1.56 (15) PIsEmptyProof [EQUIVALENT, 0 ms] 3.04/1.56 (16) YES 3.04/1.56 3.04/1.56 3.04/1.56 ---------------------------------------- 3.04/1.56 3.04/1.56 (0) 3.04/1.56 Obligation: 3.04/1.56 Context-sensitive rewrite system: 3.04/1.56 The TRS R consists of the following rules: 3.04/1.56 3.04/1.56 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.04/1.56 fst(pair(XS, YS)) -> XS 3.04/1.56 snd(pair(XS, YS)) -> YS 3.04/1.56 splitAt(0, XS) -> pair(nil, XS) 3.04/1.56 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.04/1.56 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The replacement map contains the following entries: 3.30/1.61 3.30/1.61 natsFrom: {1} 3.30/1.61 cons: {1} 3.30/1.61 s: {1} 3.30/1.61 fst: {1} 3.30/1.61 pair: {1, 2} 3.30/1.61 snd: {1} 3.30/1.61 splitAt: {1, 2} 3.30/1.61 0: empty set 3.30/1.61 nil: empty set 3.30/1.61 u: {1} 3.30/1.61 head: {1} 3.30/1.61 tail: {1} 3.30/1.61 sel: {1, 2} 3.30/1.61 afterNth: {1, 2} 3.30/1.61 take: {1, 2} 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (1) CSRInnermostProof (EQUIVALENT) 3.30/1.61 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (2) 3.30/1.61 Obligation: 3.30/1.61 Context-sensitive rewrite system: 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The replacement map contains the following entries: 3.30/1.61 3.30/1.61 natsFrom: {1} 3.30/1.61 cons: {1} 3.30/1.61 s: {1} 3.30/1.61 fst: {1} 3.30/1.61 pair: {1, 2} 3.30/1.61 snd: {1} 3.30/1.61 splitAt: {1, 2} 3.30/1.61 0: empty set 3.30/1.61 nil: empty set 3.30/1.61 u: {1} 3.30/1.61 head: {1} 3.30/1.61 tail: {1} 3.30/1.61 sel: {1, 2} 3.30/1.61 afterNth: {1, 2} 3.30/1.61 take: {1, 2} 3.30/1.61 3.30/1.61 3.30/1.61 Innermost Strategy. 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (3) CSDependencyPairsProof (EQUIVALENT) 3.30/1.61 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (4) 3.30/1.61 Obligation: 3.30/1.61 Q-restricted context-sensitive dependency pair problem: 3.30/1.61 The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2, SPLITAT_2, HEAD_1, SEL_2, AFTERNTH_2, FST_1, TAKE_2, SND_1, TAIL_1, NATSFROM_1} are replacing on all positions. 3.30/1.61 For all symbols f in {cons_2, u_4, U_4} we have mu(f) = {1}. 3.30/1.61 The symbols in {U'_1} are not replacing on any position. 3.30/1.61 3.30/1.61 The ordinary context-sensitive dependency pairs DP_o are: 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> U(splitAt(N, XS), N, X, XS) 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) 3.30/1.61 SEL(N, XS) -> HEAD(afterNth(N, XS)) 3.30/1.61 SEL(N, XS) -> AFTERNTH(N, XS) 3.30/1.61 TAKE(N, XS) -> FST(splitAt(N, XS)) 3.30/1.61 TAKE(N, XS) -> SPLITAT(N, XS) 3.30/1.61 AFTERNTH(N, XS) -> SND(splitAt(N, XS)) 3.30/1.61 AFTERNTH(N, XS) -> SPLITAT(N, XS) 3.30/1.61 3.30/1.61 The collapsing dependency pairs are DP_c: 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> XS 3.30/1.61 U(pair(YS, ZS), N, X, XS) -> X 3.30/1.61 TAIL(cons(N, XS)) -> XS 3.30/1.61 3.30/1.61 3.30/1.61 The hidden terms of R are: 3.30/1.61 3.30/1.61 natsFrom(s(x0)) 3.30/1.61 3.30/1.61 Every hiding context is built from: 3.30/1.61 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@69ba325 3.30/1.61 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@3d947032 3.30/1.61 3.30/1.61 Hence, the new unhiding pairs DP_u are : 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> U'(XS) 3.30/1.61 U(pair(YS, ZS), N, X, XS) -> U'(X) 3.30/1.61 TAIL(cons(N, XS)) -> U'(XS) 3.30/1.61 U'(s(x_0)) -> U'(x_0) 3.30/1.61 U'(natsFrom(x_0)) -> U'(x_0) 3.30/1.61 U'(natsFrom(s(x0))) -> NATSFROM(s(x0)) 3.30/1.61 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The set Q consists of the following terms: 3.30/1.61 3.30/1.61 natsFrom(x0) 3.30/1.61 fst(pair(x0, x1)) 3.30/1.61 snd(pair(x0, x1)) 3.30/1.61 splitAt(0, x0) 3.30/1.61 splitAt(s(x0), cons(x1, x2)) 3.30/1.61 u(pair(x0, x1), x2, x3, x4) 3.30/1.61 head(cons(x0, x1)) 3.30/1.61 tail(cons(x0, x1)) 3.30/1.61 sel(x0, x1) 3.30/1.61 take(x0, x1) 3.30/1.61 afterNth(x0, x1) 3.30/1.61 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (5) QCSDependencyGraphProof (EQUIVALENT) 3.30/1.61 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 2 SCCs with 9 less nodes. 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (6) 3.30/1.61 Complex Obligation (AND) 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (7) 3.30/1.61 Obligation: 3.30/1.61 Q-restricted context-sensitive dependency pair problem: 3.30/1.61 The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. 3.30/1.61 For all symbols f in {cons_2, u_4} we have mu(f) = {1}. 3.30/1.61 The symbols in {U'_1} are not replacing on any position. 3.30/1.61 3.30/1.61 The TRS P consists of the following rules: 3.30/1.61 3.30/1.61 U'(s(x_0)) -> U'(x_0) 3.30/1.61 U'(natsFrom(x_0)) -> U'(x_0) 3.30/1.61 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The set Q consists of the following terms: 3.30/1.61 3.30/1.61 natsFrom(x0) 3.30/1.61 fst(pair(x0, x1)) 3.30/1.61 snd(pair(x0, x1)) 3.30/1.61 splitAt(0, x0) 3.30/1.61 splitAt(s(x0), cons(x1, x2)) 3.30/1.61 u(pair(x0, x1), x2, x3, x4) 3.30/1.61 head(cons(x0, x1)) 3.30/1.61 tail(cons(x0, x1)) 3.30/1.61 sel(x0, x1) 3.30/1.61 take(x0, x1) 3.30/1.61 afterNth(x0, x1) 3.30/1.61 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (8) QCSDPSubtermProof (EQUIVALENT) 3.30/1.61 We use the subterm processor [DA_EMMES]. 3.30/1.61 3.30/1.61 3.30/1.61 The following pairs can be oriented strictly and are deleted. 3.30/1.61 3.30/1.61 U'(s(x_0)) -> U'(x_0) 3.30/1.61 U'(natsFrom(x_0)) -> U'(x_0) 3.30/1.61 The remaining pairs can at least be oriented weakly. 3.30/1.61 none 3.30/1.61 Used ordering: Combined order from the following AFS and order. 3.30/1.61 U'(x1) = x1 3.30/1.61 3.30/1.61 3.30/1.61 Subterm Order 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (9) 3.30/1.61 Obligation: 3.30/1.61 Q-restricted context-sensitive dependency pair problem: 3.30/1.61 The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. 3.30/1.61 For all symbols f in {cons_2, u_4} we have mu(f) = {1}. 3.30/1.61 3.30/1.61 The TRS P consists of the following rules: 3.30/1.61 none 3.30/1.61 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The set Q consists of the following terms: 3.30/1.61 3.30/1.61 natsFrom(x0) 3.30/1.61 fst(pair(x0, x1)) 3.30/1.61 snd(pair(x0, x1)) 3.30/1.61 splitAt(0, x0) 3.30/1.61 splitAt(s(x0), cons(x1, x2)) 3.30/1.61 u(pair(x0, x1), x2, x3, x4) 3.30/1.61 head(cons(x0, x1)) 3.30/1.61 tail(cons(x0, x1)) 3.30/1.61 sel(x0, x1) 3.30/1.61 take(x0, x1) 3.30/1.61 afterNth(x0, x1) 3.30/1.61 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (10) PIsEmptyProof (EQUIVALENT) 3.30/1.61 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (11) 3.30/1.61 YES 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (12) 3.30/1.61 Obligation: 3.30/1.61 Q-restricted context-sensitive dependency pair problem: 3.30/1.61 The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2, SPLITAT_2} are replacing on all positions. 3.30/1.61 For all symbols f in {cons_2, u_4} we have mu(f) = {1}. 3.30/1.61 3.30/1.61 The TRS P consists of the following rules: 3.30/1.61 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) 3.30/1.61 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The set Q consists of the following terms: 3.30/1.61 3.30/1.61 natsFrom(x0) 3.30/1.61 fst(pair(x0, x1)) 3.30/1.61 snd(pair(x0, x1)) 3.30/1.61 splitAt(0, x0) 3.30/1.61 splitAt(s(x0), cons(x1, x2)) 3.30/1.61 u(pair(x0, x1), x2, x3, x4) 3.30/1.61 head(cons(x0, x1)) 3.30/1.61 tail(cons(x0, x1)) 3.30/1.61 sel(x0, x1) 3.30/1.61 take(x0, x1) 3.30/1.61 afterNth(x0, x1) 3.30/1.61 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (13) QCSDPSubtermProof (EQUIVALENT) 3.30/1.61 We use the subterm processor [DA_EMMES]. 3.30/1.61 3.30/1.61 3.30/1.61 The following pairs can be oriented strictly and are deleted. 3.30/1.61 3.30/1.61 SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) 3.30/1.61 The remaining pairs can at least be oriented weakly. 3.30/1.61 none 3.30/1.61 Used ordering: Combined order from the following AFS and order. 3.30/1.61 SPLITAT(x1, x2) = x1 3.30/1.61 3.30/1.61 3.30/1.61 Subterm Order 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (14) 3.30/1.61 Obligation: 3.30/1.61 Q-restricted context-sensitive dependency pair problem: 3.30/1.61 The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. 3.30/1.61 For all symbols f in {cons_2, u_4} we have mu(f) = {1}. 3.30/1.61 3.30/1.61 The TRS P consists of the following rules: 3.30/1.61 none 3.30/1.61 3.30/1.61 The TRS R consists of the following rules: 3.30/1.61 3.30/1.61 natsFrom(N) -> cons(N, natsFrom(s(N))) 3.30/1.61 fst(pair(XS, YS)) -> XS 3.30/1.61 snd(pair(XS, YS)) -> YS 3.30/1.61 splitAt(0, XS) -> pair(nil, XS) 3.30/1.61 splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) 3.30/1.61 u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) 3.30/1.61 head(cons(N, XS)) -> N 3.30/1.61 tail(cons(N, XS)) -> XS 3.30/1.61 sel(N, XS) -> head(afterNth(N, XS)) 3.30/1.61 take(N, XS) -> fst(splitAt(N, XS)) 3.30/1.61 afterNth(N, XS) -> snd(splitAt(N, XS)) 3.30/1.61 3.30/1.61 The set Q consists of the following terms: 3.30/1.61 3.30/1.61 natsFrom(x0) 3.30/1.61 fst(pair(x0, x1)) 3.30/1.61 snd(pair(x0, x1)) 3.30/1.61 splitAt(0, x0) 3.30/1.61 splitAt(s(x0), cons(x1, x2)) 3.30/1.61 u(pair(x0, x1), x2, x3, x4) 3.30/1.61 head(cons(x0, x1)) 3.30/1.61 tail(cons(x0, x1)) 3.30/1.61 sel(x0, x1) 3.30/1.61 take(x0, x1) 3.30/1.61 afterNth(x0, x1) 3.30/1.61 3.30/1.61 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (15) PIsEmptyProof (EQUIVALENT) 3.30/1.61 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.30/1.61 ---------------------------------------- 3.30/1.61 3.30/1.61 (16) 3.30/1.61 YES 3.30/1.62 EOF