3.23/1.64 YES 3.23/1.66 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.23/1.66 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.23/1.66 3.23/1.66 3.23/1.66 Termination of the given CSR could be proven: 3.23/1.66 3.23/1.66 (0) CSR 3.23/1.66 (1) CSRInnermostProof [EQUIVALENT, 0 ms] 3.23/1.66 (2) CSR 3.23/1.66 (3) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.23/1.66 (4) QCSDP 3.23/1.66 (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.23/1.66 (6) AND 3.23/1.66 (7) QCSDP 3.23/1.66 (8) QCSDPSubtermProof [EQUIVALENT, 16 ms] 3.23/1.66 (9) QCSDP 3.23/1.66 (10) PIsEmptyProof [EQUIVALENT, 0 ms] 3.23/1.66 (11) YES 3.23/1.66 (12) QCSDP 3.23/1.66 (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.23/1.66 (14) QCSDP 3.23/1.66 (15) PIsEmptyProof [EQUIVALENT, 0 ms] 3.23/1.66 (16) YES 3.23/1.66 (17) QCSDP 3.23/1.66 (18) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.23/1.66 (19) QCSDP 3.23/1.66 (20) PIsEmptyProof [EQUIVALENT, 0 ms] 3.23/1.66 (21) YES 3.23/1.66 (22) QCSDP 3.23/1.66 (23) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.23/1.66 (24) QCSDP 3.23/1.66 (25) PIsEmptyProof [EQUIVALENT, 0 ms] 3.23/1.66 (26) YES 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (0) 3.23/1.66 Obligation: 3.23/1.66 Context-sensitive rewrite system: 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The replacement map contains the following entries: 3.23/1.66 3.23/1.66 from: {1} 3.23/1.66 cons: {1} 3.23/1.66 s: {1} 3.23/1.66 2ndspos: {1, 2} 3.23/1.66 0: empty set 3.23/1.66 rnil: empty set 3.23/1.66 rcons: {1, 2} 3.23/1.66 posrecip: {1} 3.23/1.66 2ndsneg: {1, 2} 3.23/1.66 negrecip: {1} 3.23/1.66 pi: {1} 3.23/1.66 plus: {1, 2} 3.23/1.66 times: {1, 2} 3.23/1.66 square: {1} 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (1) CSRInnermostProof (EQUIVALENT) 3.23/1.66 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (2) 3.23/1.66 Obligation: 3.23/1.66 Context-sensitive rewrite system: 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The replacement map contains the following entries: 3.23/1.66 3.23/1.66 from: {1} 3.23/1.66 cons: {1} 3.23/1.66 s: {1} 3.23/1.66 2ndspos: {1, 2} 3.23/1.66 0: empty set 3.23/1.66 rnil: empty set 3.23/1.66 rcons: {1, 2} 3.23/1.66 posrecip: {1} 3.23/1.66 2ndsneg: {1, 2} 3.23/1.66 negrecip: {1} 3.23/1.66 pi: {1} 3.23/1.66 plus: {1, 2} 3.23/1.66 times: {1, 2} 3.23/1.66 square: {1} 3.23/1.66 3.23/1.66 3.23/1.66 Innermost Strategy. 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (3) CSDependencyPairsProof (EQUIVALENT) 3.23/1.66 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (4) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2, PI_1, FROM_1, PLUS_2, TIMES_2, SQUARE_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 The symbols in {U_1} are not replacing on any position. 3.23/1.66 3.23/1.66 The ordinary context-sensitive dependency pairs DP_o are: 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.23/1.66 PI(X) -> 2NDSPOS(X, from(0)) 3.23/1.66 PI(X) -> FROM(0) 3.23/1.66 PLUS(s(X), Y) -> PLUS(X, Y) 3.23/1.66 TIMES(s(X), Y) -> PLUS(Y, times(X, Y)) 3.23/1.66 TIMES(s(X), Y) -> TIMES(X, Y) 3.23/1.66 SQUARE(X) -> TIMES(X, X) 3.23/1.66 3.23/1.66 The collapsing dependency pairs are DP_c: 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> Y 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> Z 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> Y 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> Z 3.23/1.66 3.23/1.66 3.23/1.66 The hidden terms of R are: 3.23/1.66 3.23/1.66 from(s(x0)) 3.23/1.66 3.23/1.66 Every hiding context is built from: 3.23/1.66 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@1b522222 3.23/1.66 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@8b3d607 3.23/1.66 3.23/1.66 Hence, the new unhiding pairs DP_u are : 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> U(Y) 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> U(Z) 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> U(Y) 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> U(Z) 3.23/1.66 U(s(x_0)) -> U(x_0) 3.23/1.66 U(from(x_0)) -> U(x_0) 3.23/1.66 U(from(s(x0))) -> FROM(s(x0)) 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (5) QCSDependencyGraphProof (EQUIVALENT) 3.23/1.66 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 4 SCCs with 7 less nodes. 3.23/1.66 The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> 2NDSNEG(z0, z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). 3.23/1.66 R' = 3.23/1.66 ( cons(X, from(s(X))), from(X)) 3.23/1.66 3.23/1.66 3.23/1.66 The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> U(z2) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). 3.23/1.66 R' = 3.23/1.66 ( cons(X, from(s(X))), from(X)) 3.23/1.66 3.23/1.66 3.23/1.66 The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> U(z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). 3.23/1.66 R' = 3.23/1.66 ( cons(X, from(s(X))), from(X)) 3.23/1.66 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (6) 3.23/1.66 Complex Obligation (AND) 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (7) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 The symbols in {U_1} are not replacing on any position. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 3.23/1.66 U(s(x_0)) -> U(x_0) 3.23/1.66 U(from(x_0)) -> U(x_0) 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (8) QCSDPSubtermProof (EQUIVALENT) 3.23/1.66 We use the subterm processor [DA_EMMES]. 3.23/1.66 3.23/1.66 3.23/1.66 The following pairs can be oriented strictly and are deleted. 3.23/1.66 3.23/1.66 U(s(x_0)) -> U(x_0) 3.23/1.66 U(from(x_0)) -> U(x_0) 3.23/1.66 The remaining pairs can at least be oriented weakly. 3.23/1.66 none 3.23/1.66 Used ordering: Combined order from the following AFS and order. 3.23/1.66 U(x1) = x1 3.23/1.66 3.23/1.66 3.23/1.66 Subterm Order 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (9) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 none 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (10) PIsEmptyProof (EQUIVALENT) 3.23/1.66 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (11) 3.23/1.66 YES 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (12) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, PLUS_2} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 3.23/1.66 PLUS(s(X), Y) -> PLUS(X, Y) 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (13) QCSDPSubtermProof (EQUIVALENT) 3.23/1.66 We use the subterm processor [DA_EMMES]. 3.23/1.66 3.23/1.66 3.23/1.66 The following pairs can be oriented strictly and are deleted. 3.23/1.66 3.23/1.66 PLUS(s(X), Y) -> PLUS(X, Y) 3.23/1.66 The remaining pairs can at least be oriented weakly. 3.23/1.66 none 3.23/1.66 Used ordering: Combined order from the following AFS and order. 3.23/1.66 PLUS(x1, x2) = x1 3.23/1.66 3.23/1.66 3.23/1.66 Subterm Order 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (14) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 none 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (15) PIsEmptyProof (EQUIVALENT) 3.23/1.66 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (16) 3.23/1.66 YES 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (17) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, TIMES_2} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 3.23/1.66 TIMES(s(X), Y) -> TIMES(X, Y) 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (18) QCSDPSubtermProof (EQUIVALENT) 3.23/1.66 We use the subterm processor [DA_EMMES]. 3.23/1.66 3.23/1.66 3.23/1.66 The following pairs can be oriented strictly and are deleted. 3.23/1.66 3.23/1.66 TIMES(s(X), Y) -> TIMES(X, Y) 3.23/1.66 The remaining pairs can at least be oriented weakly. 3.23/1.66 none 3.23/1.66 Used ordering: Combined order from the following AFS and order. 3.23/1.66 TIMES(x1, x2) = x1 3.23/1.66 3.23/1.66 3.23/1.66 Subterm Order 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (19) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 none 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (20) PIsEmptyProof (EQUIVALENT) 3.23/1.66 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (21) 3.23/1.66 YES 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (22) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSPOS_2, 2NDSNEG_2} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (23) QCSDPSubtermProof (EQUIVALENT) 3.23/1.66 We use the subterm processor [DA_EMMES]. 3.23/1.66 3.23/1.66 3.23/1.66 The following pairs can be oriented strictly and are deleted. 3.23/1.66 3.23/1.66 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 3.23/1.66 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 3.23/1.66 The remaining pairs can at least be oriented weakly. 3.23/1.66 none 3.23/1.66 Used ordering: Combined order from the following AFS and order. 3.23/1.66 2NDSPOS(x1, x2) = x1 3.23/1.66 3.23/1.66 2NDSNEG(x1, x2) = x1 3.23/1.66 3.23/1.66 3.23/1.66 Subterm Order 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (24) 3.23/1.66 Obligation: 3.23/1.66 Q-restricted context-sensitive dependency pair problem: 3.23/1.66 The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. 3.23/1.66 For all symbols f in {cons_2} we have mu(f) = {1}. 3.23/1.66 3.23/1.66 The TRS P consists of the following rules: 3.23/1.66 none 3.23/1.66 3.23/1.66 The TRS R consists of the following rules: 3.23/1.66 3.23/1.66 from(X) -> cons(X, from(s(X))) 3.23/1.66 2ndspos(0, Z) -> rnil 3.23/1.66 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 3.23/1.66 2ndsneg(0, Z) -> rnil 3.23/1.66 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 3.23/1.66 pi(X) -> 2ndspos(X, from(0)) 3.23/1.66 plus(0, Y) -> Y 3.23/1.66 plus(s(X), Y) -> s(plus(X, Y)) 3.23/1.66 times(0, Y) -> 0 3.23/1.66 times(s(X), Y) -> plus(Y, times(X, Y)) 3.23/1.66 square(X) -> times(X, X) 3.23/1.66 3.23/1.66 The set Q consists of the following terms: 3.23/1.66 3.23/1.66 from(x0) 3.23/1.66 2ndspos(0, x0) 3.23/1.66 2ndspos(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 2ndsneg(0, x0) 3.23/1.66 2ndsneg(s(x0), cons(x1, cons(x2, x3))) 3.23/1.66 pi(x0) 3.23/1.66 plus(0, x0) 3.23/1.66 plus(s(x0), x1) 3.23/1.66 times(0, x0) 3.23/1.66 times(s(x0), x1) 3.23/1.66 square(x0) 3.23/1.66 3.23/1.66 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (25) PIsEmptyProof (EQUIVALENT) 3.23/1.66 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.23/1.66 ---------------------------------------- 3.23/1.66 3.23/1.66 (26) 3.23/1.66 YES 3.51/1.69 EOF