0.00/0.07 YES 0.00/0.07 We consider the system theBenchmark. 0.00/0.07 0.00/0.07 Alphabet: 0.00/0.07 0.00/0.07 0 : [] --> o 0.00/0.07 either : [o * o] --> o 0.00/0.07 f : [o -> o * o * o] --> o 0.00/0.07 g : [o * o] --> o 0.00/0.07 s : [o] --> o 0.00/0.07 0.00/0.07 Rules: 0.00/0.07 0.00/0.07 f(h, x, 0) => 0 0.00/0.07 f(h, x, s(y)) => g(y, either(y, h x)) 0.00/0.07 g(x, y) => f(/\z.s(0), y, x) 0.00/0.07 0.00/0.07 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 0.00/0.07 0.00/0.07 We use rule removal, following [Kop12, Theorem 2.23]. 0.00/0.07 0.00/0.07 This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 0.00/0.07 0.00/0.07 f(F, X, 0) >? 0 0.00/0.07 f(F, X, s(Y)) >? g(Y, either(Y, F X)) 0.00/0.07 g(X, Y) >? f(/\x.s(0), Y, X) 0.00/0.07 0.00/0.07 We orient these requirements with a polynomial interpretation in the natural numbers. 0.00/0.07 0.00/0.07 The following interpretation satisfies the requirements: 0.00/0.07 0.00/0.07 0 = 0 0.00/0.07 either = \y0y1.y0 + y1 0.00/0.07 f = \G0y1y2.1 + y1 + 2y2 + G0(y1) 0.00/0.07 g = \y0y1.1 + y1 + 2y0 0.00/0.07 s = \y0.2y0 0.00/0.07 0.00/0.07 Using this interpretation, the requirements translate to: 0.00/0.07 0.00/0.07 [[f(_F0, _x1, 0)]] = 1 + x1 + F0(x1) > 0 = [[0]] 0.00/0.07 [[f(_F0, _x1, s(_x2))]] = 1 + x1 + 4x2 + F0(x1) >= 1 + x1 + 3x2 + F0(x1) = [[g(_x2, either(_x2, _F0 _x1))]] 0.00/0.08 [[g(_x0, _x1)]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[f(/\x.s(0), _x1, _x0)]] 0.00/0.08 0.00/0.08 We can thus remove the following rules: 0.00/0.08 0.00/0.08 f(F, X, 0) => 0 0.00/0.08 0.00/0.08 We use rule removal, following [Kop12, Theorem 2.23]. 0.00/0.08 0.00/0.08 This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 0.00/0.08 0.00/0.08 f(F, X, s(Y)) >? g(Y, either(Y, F X)) 0.00/0.08 g(X, Y) >? f(/\x.s(0), Y, X) 0.00/0.08 0.00/0.08 We orient these requirements with a polynomial interpretation in the natural numbers. 0.00/0.08 0.00/0.08 The following interpretation satisfies the requirements: 0.00/0.08 0.00/0.08 0 = 0 0.00/0.08 either = \y0y1.y0 + y1 0.00/0.08 f = \G0y1y2.2y1 + 3y2 + 2G0(y1) 0.00/0.08 g = \y0y1.2 + 2y1 + 3y0 0.00/0.08 s = \y0.1 + 3y0 0.00/0.08 0.00/0.08 Using this interpretation, the requirements translate to: 0.00/0.08 0.00/0.08 [[f(_F0, _x1, s(_x2))]] = 3 + 2x1 + 9x2 + 2F0(x1) > 2 + 2x1 + 5x2 + 2F0(x1) = [[g(_x2, either(_x2, _F0 _x1))]] 0.00/0.08 [[g(_x0, _x1)]] = 2 + 2x1 + 3x0 >= 2 + 2x1 + 3x0 = [[f(/\x.s(0), _x1, _x0)]] 0.00/0.08 0.00/0.08 We can thus remove the following rules: 0.00/0.08 0.00/0.08 f(F, X, s(Y)) => g(Y, either(Y, F X)) 0.00/0.08 0.00/0.08 We use rule removal, following [Kop12, Theorem 2.23]. 0.00/0.08 0.00/0.08 This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 0.00/0.08 0.00/0.08 g(X, Y) >? f(/\x.s(0), Y, X) 0.00/0.08 0.00/0.08 We orient these requirements with a polynomial interpretation in the natural numbers. 0.00/0.08 0.00/0.08 The following interpretation satisfies the requirements: 0.00/0.08 0.00/0.08 0 = 0 0.00/0.08 f = \G0y1y2.y1 + y2 + G0(0) 0.00/0.08 g = \y0y1.3 + 3y0 + 3y1 0.00/0.08 s = \y0.y0 0.00/0.08 0.00/0.08 Using this interpretation, the requirements translate to: 0.00/0.08 0.00/0.08 [[g(_x0, _x1)]] = 3 + 3x0 + 3x1 > x0 + x1 = [[f(/\x.s(0), _x1, _x0)]] 0.00/0.08 0.00/0.08 We can thus remove the following rules: 0.00/0.08 0.00/0.08 g(X, Y) => f(/\x.s(0), Y, X) 0.00/0.08 0.00/0.08 All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. 0.00/0.08 0.00/0.08 0.00/0.08 +++ Citations +++ 0.00/0.08 0.00/0.08 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 0.00/0.08 EOF