2.66/1.47 YES 2.66/1.47 We consider the system theBenchmark. 2.66/1.47 2.66/1.47 Alphabet: 2.66/1.47 2.66/1.47 0 : [] --> nat 2.66/1.47 cons : [nat * list] --> list 2.66/1.47 false : [] --> bool 2.66/1.47 gcd : [nat * nat] --> nat 2.66/1.47 gcdlists : [list * list] --> list 2.66/1.47 if : [bool * nat * nat] --> nat 2.66/1.47 le : [nat * nat] --> bool 2.66/1.47 minus : [nat * nat] --> nat 2.66/1.47 nil : [] --> list 2.66/1.47 s : [nat] --> nat 2.66/1.47 true : [] --> bool 2.66/1.47 zipWith : [nat -> nat -> nat * list * list] --> list 2.66/1.47 2.66/1.47 Rules: 2.66/1.47 2.66/1.47 le(0, x) => true 2.66/1.47 le(s(x), 0) => false 2.66/1.47 le(s(x), s(y)) => le(x, y) 2.66/1.47 minus(x, 0) => x 2.66/1.47 minus(s(x), s(y)) => minus(x, y) 2.66/1.47 gcd(0, x) => 0 2.66/1.47 gcd(s(x), 0) => 0 2.66/1.47 gcd(s(x), s(y)) => if(le(y, x), s(x), s(y)) 2.66/1.47 if(true, s(x), s(y)) => gcd(minus(x, y), s(y)) 2.66/1.47 if(false, s(x), s(y)) => gcd(minus(y, x), s(x)) 2.66/1.47 zipWith(f, x, nil) => nil 2.66/1.47 zipWith(f, nil, x) => nil 2.66/1.47 zipWith(f, cons(x, y), cons(z, u)) => cons(f x z, zipWith(f, y, u)) 2.66/1.47 gcdlists(x, y) => zipWith(/\z./\u.gcd(z, u), x, y) 2.66/1.47 2.66/1.47 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 2.66/1.47 2.66/1.47 We observe that the rules contain a first-order subset: 2.66/1.47 2.66/1.47 le(0, X) => true 2.66/1.47 le(s(X), 0) => false 2.66/1.47 le(s(X), s(Y)) => le(X, Y) 2.66/1.47 minus(X, 0) => X 2.66/1.47 minus(s(X), s(Y)) => minus(X, Y) 2.66/1.47 gcd(0, X) => 0 2.66/1.47 gcd(s(X), 0) => 0 2.66/1.47 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) 2.66/1.47 if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) 2.66/1.47 if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) 2.66/1.47 2.66/1.47 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. 2.66/1.47 2.66/1.47 According to the external first-order termination prover, this system is indeed Ce-terminating: 2.66/1.47 2.66/1.47 || proof of resources/system.trs 2.66/1.47 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 2.66/1.47 || 2.66/1.47 || 2.66/1.47 || Termination w.r.t. Q of the given QTRS could be proven: 2.66/1.47 || 2.66/1.47 || (0) QTRS 2.66/1.47 || (1) DependencyPairsProof [EQUIVALENT] 2.66/1.47 || (2) QDP 2.66/1.47 || (3) DependencyGraphProof [EQUIVALENT] 2.66/1.47 || (4) AND 2.66/1.47 || (5) QDP 2.66/1.47 || (6) UsableRulesProof [EQUIVALENT] 2.66/1.47 || (7) QDP 2.66/1.47 || (8) QDPSizeChangeProof [EQUIVALENT] 2.66/1.47 || (9) YES 2.66/1.47 || (10) QDP 2.66/1.47 || (11) UsableRulesProof [EQUIVALENT] 2.66/1.47 || (12) QDP 2.66/1.47 || (13) QDPSizeChangeProof [EQUIVALENT] 2.66/1.47 || (14) YES 2.66/1.47 || (15) QDP 2.66/1.47 || (16) QDPOrderProof [EQUIVALENT] 2.66/1.47 || (17) QDP 2.66/1.47 || (18) DependencyGraphProof [EQUIVALENT] 2.66/1.47 || (19) TRUE 2.66/1.47 || 2.66/1.47 || 2.66/1.47 || ---------------------------------------- 2.66/1.47 || 2.66/1.47 || (0) 2.66/1.47 || Obligation: 2.66/1.47 || Q restricted rewrite system: 2.66/1.47 || The TRS R consists of the following rules: 2.66/1.47 || 2.66/1.47 || le(0, %X) -> true 2.66/1.47 || le(s(%X), 0) -> false 2.66/1.47 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.47 || minus(%X, 0) -> %X 2.66/1.47 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.47 || gcd(0, %X) -> 0 2.66/1.47 || gcd(s(%X), 0) -> 0 2.66/1.47 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.47 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.47 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (1) DependencyPairsProof (EQUIVALENT) 2.66/1.48 || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (2) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 2.66/1.48 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 2.66/1.48 || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || GCD(s(%X), s(%Y)) -> LE(%Y, %X) 2.66/1.48 || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) 2.66/1.48 || IF(true, s(%X), s(%Y)) -> MINUS(%X, %Y) 2.66/1.48 || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) 2.66/1.48 || IF(false, s(%X), s(%Y)) -> MINUS(%Y, %X) 2.66/1.48 || 2.66/1.48 || The TRS R consists of the following rules: 2.66/1.48 || 2.66/1.48 || le(0, %X) -> true 2.66/1.48 || le(s(%X), 0) -> false 2.66/1.48 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || gcd(0, %X) -> 0 2.66/1.48 || gcd(s(%X), 0) -> 0 2.66/1.48 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.48 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (3) DependencyGraphProof (EQUIVALENT) 2.66/1.48 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (4) 2.66/1.48 || Complex Obligation (AND) 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (5) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 2.66/1.48 || 2.66/1.48 || The TRS R consists of the following rules: 2.66/1.48 || 2.66/1.48 || le(0, %X) -> true 2.66/1.48 || le(s(%X), 0) -> false 2.66/1.48 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || gcd(0, %X) -> 0 2.66/1.48 || gcd(s(%X), 0) -> 0 2.66/1.48 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.48 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (6) UsableRulesProof (EQUIVALENT) 2.66/1.48 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (7) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 2.66/1.48 || 2.66/1.48 || R is empty. 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (8) QDPSizeChangeProof (EQUIVALENT) 2.66/1.48 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 2.66/1.48 || 2.66/1.48 || From the DPs we obtained the following set of size-change graphs: 2.66/1.48 || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 2.66/1.48 || The graph contains the following edges 1 > 1, 2 > 2 2.66/1.48 || 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (9) 2.66/1.48 || YES 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (10) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 2.66/1.48 || 2.66/1.48 || The TRS R consists of the following rules: 2.66/1.48 || 2.66/1.48 || le(0, %X) -> true 2.66/1.48 || le(s(%X), 0) -> false 2.66/1.48 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || gcd(0, %X) -> 0 2.66/1.48 || gcd(s(%X), 0) -> 0 2.66/1.48 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.48 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (11) UsableRulesProof (EQUIVALENT) 2.66/1.48 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (12) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 2.66/1.48 || 2.66/1.48 || R is empty. 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (13) QDPSizeChangeProof (EQUIVALENT) 2.66/1.48 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 2.66/1.48 || 2.66/1.48 || From the DPs we obtained the following set of size-change graphs: 2.66/1.48 || *LE(s(%X), s(%Y)) -> LE(%X, %Y) 2.66/1.48 || The graph contains the following edges 1 > 1, 2 > 2 2.66/1.48 || 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (14) 2.66/1.48 || YES 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (15) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) 2.66/1.48 || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) 2.66/1.48 || 2.66/1.48 || The TRS R consists of the following rules: 2.66/1.48 || 2.66/1.48 || le(0, %X) -> true 2.66/1.48 || le(s(%X), 0) -> false 2.66/1.48 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || gcd(0, %X) -> 0 2.66/1.48 || gcd(s(%X), 0) -> 0 2.66/1.48 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.48 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (16) QDPOrderProof (EQUIVALENT) 2.66/1.48 || We use the reduction pair processor [LPAR04,JAR06]. 2.66/1.48 || 2.66/1.48 || 2.66/1.48 || The following pairs can be oriented strictly and are deleted. 2.66/1.48 || 2.66/1.48 || IF(true, s(%X), s(%Y)) -> GCD(minus(%X, %Y), s(%Y)) 2.66/1.48 || IF(false, s(%X), s(%Y)) -> GCD(minus(%Y, %X), s(%X)) 2.66/1.48 || The remaining pairs can at least be oriented weakly. 2.66/1.48 || Used ordering: Polynomial interpretation [POLO]: 2.66/1.48 || 2.66/1.48 || POL(0) = 0 2.66/1.48 || POL(GCD(x_1, x_2)) = 1 + x_1 + x_2 2.66/1.48 || POL(IF(x_1, x_2, x_3)) = 1 + x_2 + x_3 2.66/1.48 || POL(false) = 0 2.66/1.48 || POL(le(x_1, x_2)) = 0 2.66/1.48 || POL(minus(x_1, x_2)) = x_1 2.66/1.48 || POL(s(x_1)) = 1 + x_1 2.66/1.48 || POL(true) = 0 2.66/1.48 || 2.66/1.48 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 2.66/1.48 || 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || 2.66/1.48 || 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (17) 2.66/1.48 || Obligation: 2.66/1.48 || Q DP problem: 2.66/1.48 || The TRS P consists of the following rules: 2.66/1.48 || 2.66/1.48 || GCD(s(%X), s(%Y)) -> IF(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || 2.66/1.48 || The TRS R consists of the following rules: 2.66/1.48 || 2.66/1.48 || le(0, %X) -> true 2.66/1.48 || le(s(%X), 0) -> false 2.66/1.48 || le(s(%X), s(%Y)) -> le(%X, %Y) 2.66/1.48 || minus(%X, 0) -> %X 2.66/1.48 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 2.66/1.48 || gcd(0, %X) -> 0 2.66/1.48 || gcd(s(%X), 0) -> 0 2.66/1.48 || gcd(s(%X), s(%Y)) -> if(le(%Y, %X), s(%X), s(%Y)) 2.66/1.48 || if(true, s(%X), s(%Y)) -> gcd(minus(%X, %Y), s(%Y)) 2.66/1.48 || if(false, s(%X), s(%Y)) -> gcd(minus(%Y, %X), s(%X)) 2.66/1.48 || ~PAIR(%X, %Y) -> %X 2.66/1.48 || ~PAIR(%X, %Y) -> %Y 2.66/1.48 || 2.66/1.48 || Q is empty. 2.66/1.48 || We have to consider all minimal (P,Q,R)-chains. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (18) DependencyGraphProof (EQUIVALENT) 2.66/1.48 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 2.66/1.48 || ---------------------------------------- 2.66/1.48 || 2.66/1.48 || (19) 2.66/1.48 || TRUE 2.66/1.48 || 2.66/1.48 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 2.66/1.48 2.66/1.48 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 2.66/1.48 2.66/1.48 Dependency Pairs P_0: 2.66/1.48 2.66/1.48 0] zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) 2.66/1.48 1] gcdlists#(X, Y) =#> zipWith#(/\x./\y.gcd(x, y), X, Y) 2.66/1.48 2] gcdlists#(X, Y) =#> gcd#(Z, U) 2.66/1.48 2.66/1.48 Rules R_0: 2.66/1.48 2.66/1.48 le(0, X) => true 2.66/1.48 le(s(X), 0) => false 2.66/1.48 le(s(X), s(Y)) => le(X, Y) 2.66/1.48 minus(X, 0) => X 2.66/1.48 minus(s(X), s(Y)) => minus(X, Y) 2.66/1.48 gcd(0, X) => 0 2.66/1.48 gcd(s(X), 0) => 0 2.66/1.48 gcd(s(X), s(Y)) => if(le(Y, X), s(X), s(Y)) 2.66/1.48 if(true, s(X), s(Y)) => gcd(minus(X, Y), s(Y)) 2.66/1.48 if(false, s(X), s(Y)) => gcd(minus(Y, X), s(X)) 2.66/1.48 zipWith(F, X, nil) => nil 2.66/1.48 zipWith(F, nil, X) => nil 2.66/1.48 zipWith(F, cons(X, Y), cons(Z, U)) => cons(F X Z, zipWith(F, Y, U)) 2.66/1.48 gcdlists(X, Y) => zipWith(/\x./\y.gcd(x, y), X, Y) 2.66/1.48 2.66/1.48 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 2.66/1.48 2.66/1.48 We consider the dependency pair problem (P_0, R_0, static, formative). 2.66/1.48 2.66/1.48 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 2.66/1.48 2.66/1.48 * 0 : 0 2.66/1.48 * 1 : 0 2.66/1.48 * 2 : 2.66/1.48 2.66/1.48 This graph has the following strongly connected components: 2.66/1.48 2.66/1.48 P_1: 2.66/1.48 2.66/1.48 zipWith#(F, cons(X, Y), cons(Z, U)) =#> zipWith#(F, Y, U) 2.66/1.48 2.66/1.48 By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). 2.66/1.48 2.66/1.48 Thus, the original system is terminating if (P_1, R_0, static, formative) is finite. 2.66/1.48 2.66/1.48 We consider the dependency pair problem (P_1, R_0, static, formative). 2.66/1.48 2.66/1.48 We apply the subterm criterion with the following projection function: 2.66/1.48 2.66/1.48 nu(zipWith#) = 2 2.66/1.48 2.66/1.48 Thus, we can orient the dependency pairs as follows: 2.66/1.48 2.66/1.48 nu(zipWith#(F, cons(X, Y), cons(Z, U))) = cons(X, Y) |> Y = nu(zipWith#(F, Y, U)) 2.66/1.48 2.66/1.48 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_1, R_0, static, f) by ({}, R_0, static, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. 2.66/1.48 2.66/1.48 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 2.66/1.48 2.66/1.48 2.66/1.48 +++ Citations +++ 2.66/1.48 2.66/1.48 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 2.66/1.48 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 2.66/1.48 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 2.66/1.48 EOF