0.00/0.07 YES 0.00/0.07 We consider the system theBenchmark. 0.00/0.07 0.00/0.07 Alphabet: 0.00/0.07 0.00/0.07 app : [] --> arrAB -> A -> B 0.00/0.07 case : [] --> SAB -> (A -> C) -> (B -> C) -> C 0.00/0.07 inl : [] --> A -> SAB 0.00/0.07 inr : [] --> B -> SAB 0.00/0.07 lam : [] --> (A -> B) -> arrAB 0.00/0.07 0.00/0.07 Rules: 0.00/0.07 0.00/0.07 app (lam (/\x.f x)) y => f y 0.00/0.07 lam (/\x.app y x) => y 0.00/0.07 case (inl x) (/\y.f y) (/\z.g z) => f x 0.00/0.07 case (inr x) (/\y.f y) (/\z.g z) => g x 0.00/0.07 0.00/0.07 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 0.00/0.07 0.00/0.07 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 0.00/0.07 0.00/0.07 Alphabet: 0.00/0.07 0.00/0.07 app : [arrAB * A] --> B 0.00/0.07 case : [SAB * A -> C * B -> C] --> C 0.00/0.07 inl : [A] --> SAB 0.00/0.07 inr : [B] --> SAB 0.00/0.07 lam : [A -> B] --> arrAB 0.00/0.07 ~AP1 : [A -> B * A] --> B 0.00/0.07 ~AP2 : [A -> C * A] --> C 0.00/0.07 ~AP3 : [B -> C * B] --> C 0.00/0.07 0.00/0.07 Rules: 0.00/0.07 0.00/0.07 app(lam(/\x.~AP1(F, x)), X) => ~AP1(F, X) 0.00/0.07 lam(/\x.app(X, x)) => X 0.00/0.07 case(inl(X), /\x.~AP2(F, x), /\y.~AP3(G, y)) => ~AP2(F, X) 0.00/0.07 case(inr(X), /\x.~AP2(F, x), /\y.~AP3(G, y)) => ~AP3(G, X) 0.00/0.07 app(lam(/\x.app(X, x)), Y) => app(X, Y) 0.00/0.07 ~AP1(F, X) => F X 0.00/0.07 ~AP2(F, X) => F X 0.00/0.07 ~AP3(F, X) => F X 0.00/0.07 0.00/0.07 Symbols ~AP1, ~AP2, and ~AP3 are encodings for application that are only used in innocuous ways. We can simplify the program (without losing non-termination) by removing them. 0.00/0.07 0.00/0.07 Additionally, we can remove some (now-)redundant rules. This gives: 0.00/0.07 0.00/0.07 Alphabet: 0.00/0.07 0.00/0.07 app : [arrAB * A] --> B 0.00/0.07 case : [SAB * A -> C * B -> C] --> C 0.00/0.07 inl : [A] --> SAB 0.00/0.07 inr : [B] --> SAB 0.00/0.07 lam : [A -> B] --> arrAB 0.00/0.07 0.00/0.07 Rules: 0.00/0.07 0.00/0.07 app(lam(/\x.X(x)), Y) => X(Y) 0.00/0.07 lam(/\x.app(X, x)) => X 0.00/0.07 case(inl(X), /\x.Y(x), /\y.Z(y)) => Y(X) 0.00/0.07 case(inr(X), /\x.Y(x), /\y.Z(y)) => Z(X) 0.00/0.07 0.00/0.07 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 0.00/0.07 0.00/0.07 We thus obtain the following dependency pair problem (P_0, R_0, static, all): 0.00/0.07 0.00/0.07 Dependency Pairs P_0: 0.00/0.07 0.00/0.07 0.00/0.07 Rules R_0: 0.00/0.07 0.00/0.07 app(lam(/\x.X(x)), Y) => X(Y) 0.00/0.07 lam(/\x.app(X, x)) => X 0.00/0.07 case(inl(X), /\x.Y(x), /\y.Z(y)) => Y(X) 0.00/0.07 case(inr(X), /\x.Y(x), /\y.Z(y)) => Z(X) 0.00/0.07 0.00/0.07 Thus, the original system is terminating if (P_0, R_0, static, all) is finite. 0.00/0.07 0.00/0.07 We consider the dependency pair problem (P_0, R_0, static, all). 0.00/0.07 0.00/0.07 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 0.00/0.07 0.00/0.07 0.00/0.07 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 0.00/0.07 0.00/0.07 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 0.00/0.07 0.00/0.07 0.00/0.07 +++ Citations +++ 0.00/0.07 0.00/0.07 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 0.00/0.07 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 0.00/0.07 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 0.00/0.07 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 0.00/0.07 EOF