11.80/11.13 YES 11.80/11.15 We consider the system theBenchmark. 11.80/11.15 11.80/11.15 Alphabet: 11.80/11.15 11.80/11.15 0 : [] --> N 11.80/11.15 even : [] --> N -> N -> B 11.80/11.15 false : [] --> B 11.80/11.15 g : [] --> N -> B 11.80/11.15 h : [] --> N -> (N -> B) -> N -> B 11.80/11.15 not : [] --> B -> B 11.80/11.15 rec : [] --> (N -> (N -> B) -> N -> B) -> B -> N -> B 11.80/11.15 true : [] --> B 11.80/11.15 11.80/11.15 Rules: 11.80/11.15 11.80/11.15 rec f (i 0) => i 11.80/11.15 g x => true 11.80/11.15 h x f y => not (f y) 11.80/11.15 not true => false 11.80/11.15 not false => true 11.80/11.15 even x y => rec h (g x) y 11.80/11.15 11.80/11.15 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 11.80/11.15 11.80/11.15 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 11.80/11.15 11.80/11.15 Alphabet: 11.80/11.15 11.80/11.15 0 : [] --> N 11.80/11.15 even : [N] --> N -> B 11.80/11.15 false : [] --> B 11.80/11.15 g : [] --> N -> B 11.80/11.15 h : [] --> N -> (N -> B) -> N -> B 11.80/11.15 not : [B] --> B 11.80/11.15 rec : [N -> (N -> B) -> N -> B * B] --> N -> B 11.80/11.15 true : [] --> B 11.80/11.15 ~AP1 : [N -> B * N] --> B 11.80/11.15 11.80/11.15 Rules: 11.80/11.15 11.80/11.15 rec(F, ~AP1(G, 0)) => G 11.80/11.15 g X => true 11.80/11.15 h X F Y => not(~AP1(F, Y)) 11.80/11.15 not(true) => false 11.80/11.15 not(false) => true 11.80/11.15 even(X) Y => ~AP1(rec(h, g X), Y) 11.80/11.15 rec(F, even(X) 0) => even(X) 11.80/11.15 rec(F, g 0) => g 11.80/11.15 rec(F, h X G 0) => h X G 11.80/11.15 ~AP1(F, X) => F X 11.80/11.15 11.80/11.15 We observe that the rules contain a first-order subset: 11.80/11.15 11.80/11.15 g X => true 11.80/11.15 not(true) => false 11.80/11.15 not(false) => true 11.80/11.15 11.80/11.15 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. 11.80/11.15 11.80/11.15 According to the external first-order termination prover, this system is indeed Ce-terminating: 11.80/11.15 11.80/11.15 || proof of resources/system.trs 11.80/11.15 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 11.80/11.15 || 11.80/11.15 || 11.80/11.15 || Termination w.r.t. Q of the given QTRS could be proven: 11.80/11.15 || 11.80/11.15 || (0) QTRS 11.80/11.15 || (1) QTRSRRRProof [EQUIVALENT] 11.80/11.15 || (2) QTRS 11.80/11.15 || (3) RisEmptyProof [EQUIVALENT] 11.80/11.15 || (4) YES 11.80/11.15 || 11.80/11.15 || 11.80/11.15 || ---------------------------------------- 11.80/11.15 || 11.80/11.15 || (0) 11.80/11.15 || Obligation: 11.80/11.15 || Q restricted rewrite system: 11.80/11.15 || The TRS R consists of the following rules: 11.80/11.15 || 11.80/11.15 || g(%X) -> true 11.80/11.15 || not(true) -> false 11.80/11.15 || not(false) -> true 11.80/11.15 || ~PAIR(%X, %Y) -> %X 11.80/11.15 || ~PAIR(%X, %Y) -> %Y 11.80/11.15 || 11.80/11.15 || Q is empty. 11.80/11.15 || 11.80/11.15 || ---------------------------------------- 11.80/11.15 || 11.80/11.15 || (1) QTRSRRRProof (EQUIVALENT) 11.80/11.15 || Used ordering: 11.80/11.15 || Knuth-Bendix order [KBO] with precedence:not_1 > ~PAIR_2 > false > g_1 > true 11.80/11.15 || 11.80/11.15 || and weight map: 11.80/11.15 || 11.80/11.15 || true=2 11.80/11.15 || false=2 11.80/11.15 || g_1=1 11.80/11.15 || not_1=0 11.80/11.15 || ~PAIR_2=0 11.80/11.15 || 11.80/11.15 || The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: 11.80/11.15 || 11.80/11.15 || g(%X) -> true 11.80/11.15 || not(true) -> false 11.80/11.15 || not(false) -> true 11.80/11.15 || ~PAIR(%X, %Y) -> %X 11.80/11.15 || ~PAIR(%X, %Y) -> %Y 11.80/11.15 || 11.80/11.15 || 11.80/11.15 || 11.80/11.15 || 11.80/11.15 || ---------------------------------------- 11.80/11.15 || 11.80/11.15 || (2) 11.80/11.15 || Obligation: 11.80/11.15 || Q restricted rewrite system: 11.80/11.15 || R is empty. 11.80/11.15 || Q is empty. 11.80/11.15 || 11.80/11.15 || ---------------------------------------- 11.80/11.15 || 11.80/11.15 || (3) RisEmptyProof (EQUIVALENT) 11.80/11.15 || The TRS R is empty. Hence, termination is trivially proven. 11.80/11.15 || ---------------------------------------- 11.80/11.15 || 11.80/11.15 || (4) 11.80/11.15 || YES 11.80/11.15 || 11.80/11.15 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 11.80/11.15 11.80/11.15 In order to do so, we start by eta-expanding the system, which gives: 11.80/11.15 11.80/11.15 rec(F, ~AP1(G, 0), X) => G X 11.80/11.15 g(X) => true 11.80/11.15 h(X, F, Y) => not(~AP1(F, Y)) 11.80/11.15 not(true) => false 11.80/11.15 not(false) => true 11.80/11.15 even(X, Y) => ~AP1(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 11.80/11.15 rec(F, even(X, 0), Y) => even(X, Y) 11.80/11.15 rec(F, g(0), X) => g(X) 11.80/11.15 rec(F, h(X, G, 0), Y) => h(X, G, Y) 11.80/11.15 ~AP1(F, X) => F X 11.80/11.15 11.80/11.15 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 11.80/11.15 11.80/11.15 Dependency Pairs P_0: 11.80/11.15 11.80/11.15 0] h#(X, F, Y) =#> not#(~AP1(F, Y)) 11.80/11.15 1] h#(X, F, Y) =#> ~AP1#(F, Y) 11.80/11.15 2] even#(X, Y) =#> ~AP1#(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 11.80/11.15 3] even#(X, Y) =#> rec#(/\x./\f./\y.h(x, /\z.f z, y), g(X), Z) 11.80/11.15 4] even#(X, Y) =#> h#(Z, /\x.F x, U) 11.80/11.15 5] even#(X, Y) =#> g#(X) 11.80/11.15 6] rec#(F, even(X, 0), Y) =#> even#(X, Y) 11.80/11.15 7] rec#(F, g(0), X) =#> g#(X) 11.80/11.15 8] rec#(F, h(X, G, 0), Y) =#> h#(X, G, Y) 11.80/11.15 11.80/11.15 Rules R_0: 11.80/11.15 11.80/11.15 rec(F, ~AP1(G, 0), X) => G X 11.80/11.15 g(X) => true 11.80/11.15 h(X, F, Y) => not(~AP1(F, Y)) 11.80/11.15 not(true) => false 11.80/11.15 not(false) => true 11.80/11.15 even(X, Y) => ~AP1(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 11.80/11.15 rec(F, even(X, 0), Y) => even(X, Y) 11.80/11.15 rec(F, g(0), X) => g(X) 11.80/11.15 rec(F, h(X, G, 0), Y) => h(X, G, Y) 11.80/11.15 ~AP1(F, X) => F X 11.80/11.15 11.80/11.15 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 11.80/11.15 11.80/11.15 We consider the dependency pair problem (P_0, R_0, static, formative). 11.80/11.15 11.80/11.15 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 11.80/11.15 11.80/11.15 * 0 : 11.80/11.15 * 1 : 11.80/11.15 * 2 : 11.80/11.15 * 3 : 7 11.80/11.15 * 4 : 0, 1 11.80/11.15 * 5 : 11.80/11.15 * 6 : 2, 3, 4, 5 11.80/11.15 * 7 : 11.80/11.15 * 8 : 0, 1 11.80/11.15 11.80/11.15 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 11.80/11.15 11.80/11.15 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 11.80/11.15 11.80/11.15 11.80/11.15 +++ Citations +++ 11.80/11.15 11.80/11.15 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 11.80/11.15 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 11.80/11.15 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 11.80/11.15 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 11.93/11.21 EOF