28.61/27.87 MAYBE 28.71/27.88 We consider the system theBenchmark. 28.71/27.88 28.71/27.88 Alphabet: 28.71/27.88 28.71/27.88 0 : [] --> N 28.71/27.88 false : [] --> B 28.71/27.88 g : [] --> N -> B 28.71/27.88 g2 : [] --> N -> B 28.71/27.88 geq : [] --> N -> N -> B 28.71/27.88 h : [] --> N -> (N -> B) -> N -> B 28.71/27.88 h2 : [] --> N -> (N -> B) -> N -> B 28.71/27.88 iszero : [] --> N -> N -> B 28.71/27.88 pred : [] --> N -> N 28.71/27.88 rec : [] --> (N -> (N -> B) -> N -> B) -> B -> N -> B 28.71/27.88 s : [] --> N -> N 28.71/27.88 true : [] --> B 28.71/27.88 28.71/27.88 Rules: 28.71/27.88 28.71/27.88 rec f (i 0) => i 28.71/27.88 g x => true 28.71/27.88 h x f y => false 28.71/27.88 iszero x y => rec h (g x) y 28.71/27.88 pred 0 => 0 28.71/27.88 pred (s x) => x 28.71/27.88 g2 x => iszero x 0 28.71/27.88 h2 x f y => f (pred y) 28.71/27.88 geq x y => rec h2 (g2 x) y 28.71/27.88 28.71/27.88 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 28.71/27.88 28.71/27.88 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 28.71/27.88 28.71/27.88 Alphabet: 28.71/27.88 28.71/27.88 0 : [] --> N 28.71/27.88 false : [] --> B 28.71/27.88 g : [] --> N -> B 28.71/27.88 g2 : [] --> N -> B 28.71/27.88 geq : [N] --> N -> B 28.71/27.88 h : [] --> N -> (N -> B) -> N -> B 28.71/27.88 h2 : [] --> N -> (N -> B) -> N -> B 28.71/27.88 iszero : [N] --> N -> B 28.71/27.88 pred : [N] --> N 28.71/27.88 rec : [N -> (N -> B) -> N -> B * B] --> N -> B 28.71/27.88 s : [N] --> N 28.71/27.88 true : [] --> B 28.71/27.88 ~AP1 : [N -> B * N] --> B 28.71/27.88 28.71/27.88 Rules: 28.71/27.88 28.71/27.88 rec(F, ~AP1(G, 0)) => G 28.71/27.88 g X => true 28.71/27.88 h X F Y => false 28.71/27.88 iszero(X) Y => ~AP1(rec(h, g X), Y) 28.71/27.88 pred(0) => 0 28.71/27.88 pred(s(X)) => X 28.71/27.88 g2 X => iszero(X) 0 28.71/27.88 h2 X F Y => ~AP1(F, pred(Y)) 28.71/27.88 geq(X) Y => ~AP1(rec(h2, g2 X), Y) 28.71/27.88 rec(F, g 0) => g 28.71/27.88 rec(F, g2 0) => g2 28.71/27.88 rec(F, geq(X) 0) => geq(X) 28.71/27.88 rec(F, h X G 0) => h X G 28.71/27.88 rec(F, h2 X G 0) => h2 X G 28.71/27.88 rec(F, iszero(X) 0) => iszero(X) 28.71/27.88 ~AP1(F, X) => F X 28.71/27.88 28.71/27.88 28.71/27.88 +++ Citations +++ 28.71/27.88 28.71/27.88 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 28.85/28.05 EOF