1.83/1.10 YES 1.83/1.11 We consider the system theBenchmark. 1.83/1.11 1.83/1.11 Alphabet: 1.83/1.11 1.83/1.11 0 : [] --> N 1.83/1.11 false : [] --> B 1.83/1.11 g : [] --> N -> B 1.83/1.11 h : [] --> N -> (N -> B) -> N -> B 1.83/1.11 iszero : [] --> N -> N -> B 1.83/1.11 rec : [] --> (N -> (N -> B) -> N -> B) -> B -> N -> B 1.83/1.11 true : [] --> B 1.83/1.11 1.83/1.11 Rules: 1.83/1.11 1.83/1.11 rec f (i 0) => i 1.83/1.11 g x => true 1.83/1.11 h x f y => false 1.83/1.11 iszero x y => rec h (g x) y 1.83/1.11 1.83/1.11 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 1.83/1.11 1.83/1.11 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 1.83/1.11 1.83/1.11 Alphabet: 1.83/1.11 1.83/1.11 0 : [] --> N 1.83/1.11 false : [] --> B 1.83/1.11 g : [] --> N -> B 1.83/1.11 h : [] --> N -> (N -> B) -> N -> B 1.83/1.11 iszero : [N] --> N -> B 1.83/1.11 rec : [N -> (N -> B) -> N -> B * B] --> N -> B 1.83/1.11 true : [] --> B 1.83/1.11 ~AP1 : [N -> B * N] --> B 1.83/1.11 1.83/1.11 Rules: 1.83/1.11 1.83/1.11 rec(F, ~AP1(G, 0)) => G 1.83/1.11 g X => true 1.83/1.11 h X F Y => false 1.83/1.11 iszero(X) Y => ~AP1(rec(h, g X), Y) 1.83/1.11 rec(F, g 0) => g 1.83/1.11 rec(F, h X G 0) => h X G 1.83/1.11 rec(F, iszero(X) 0) => iszero(X) 1.83/1.11 ~AP1(F, X) => F X 1.83/1.11 1.83/1.11 We observe that the rules contain a first-order subset: 1.83/1.11 1.83/1.11 g X => true 1.83/1.11 1.83/1.11 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. 1.83/1.11 1.83/1.11 According to the external first-order termination prover, this system is indeed Ce-terminating: 1.83/1.11 1.83/1.11 || proof of resources/system.trs 1.83/1.11 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 1.83/1.11 || 1.83/1.11 || 1.83/1.11 || Termination w.r.t. Q of the given QTRS could be proven: 1.83/1.11 || 1.83/1.11 || (0) QTRS 1.83/1.11 || (1) QTRSRRRProof [EQUIVALENT] 1.83/1.11 || (2) QTRS 1.83/1.11 || (3) RisEmptyProof [EQUIVALENT] 1.83/1.11 || (4) YES 1.83/1.11 || 1.83/1.11 || 1.83/1.11 || ---------------------------------------- 1.83/1.11 || 1.83/1.11 || (0) 1.83/1.11 || Obligation: 1.83/1.11 || Q restricted rewrite system: 1.83/1.11 || The TRS R consists of the following rules: 1.83/1.11 || 1.83/1.11 || g(%X) -> true 1.83/1.11 || ~PAIR(%X, %Y) -> %X 1.83/1.11 || ~PAIR(%X, %Y) -> %Y 1.83/1.11 || 1.83/1.11 || Q is empty. 1.83/1.11 || 1.83/1.11 || ---------------------------------------- 1.83/1.11 || 1.83/1.11 || (1) QTRSRRRProof (EQUIVALENT) 1.83/1.11 || Used ordering: 1.83/1.11 || Polynomial interpretation [POLO]: 1.83/1.11 || 1.83/1.11 || POL(g(x_1)) = 2 + x_1 1.83/1.11 || POL(true) = 1 1.83/1.11 || POL(~PAIR(x_1, x_2)) = 2 + x_1 + x_2 1.83/1.11 || With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: 1.83/1.11 || 1.83/1.11 || g(%X) -> true 1.83/1.11 || ~PAIR(%X, %Y) -> %X 1.83/1.11 || ~PAIR(%X, %Y) -> %Y 1.83/1.11 || 1.83/1.11 || 1.83/1.11 || 1.83/1.11 || 1.83/1.11 || ---------------------------------------- 1.83/1.11 || 1.83/1.11 || (2) 1.83/1.11 || Obligation: 1.83/1.11 || Q restricted rewrite system: 1.83/1.11 || R is empty. 1.83/1.11 || Q is empty. 1.83/1.11 || 1.83/1.11 || ---------------------------------------- 1.83/1.11 || 1.83/1.11 || (3) RisEmptyProof (EQUIVALENT) 1.83/1.11 || The TRS R is empty. Hence, termination is trivially proven. 1.83/1.11 || ---------------------------------------- 1.83/1.11 || 1.83/1.11 || (4) 1.83/1.11 || YES 1.83/1.11 || 1.83/1.11 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 1.83/1.11 1.83/1.11 In order to do so, we start by eta-expanding the system, which gives: 1.83/1.11 1.83/1.11 rec(F, ~AP1(G, 0), X) => G X 1.83/1.11 g(X) => true 1.83/1.11 h(X, F, Y) => false 1.83/1.11 iszero(X, Y) => ~AP1(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 1.83/1.11 rec(F, g(0), X) => g(X) 1.83/1.11 rec(F, h(X, G, 0), Y) => h(X, G, Y) 1.83/1.11 rec(F, iszero(X, 0), Y) => iszero(X, Y) 1.83/1.11 ~AP1(F, X) => F X 1.83/1.11 1.83/1.11 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 1.83/1.11 1.83/1.11 Dependency Pairs P_0: 1.83/1.11 1.83/1.11 0] iszero#(X, Y) =#> ~AP1#(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 1.83/1.11 1] iszero#(X, Y) =#> rec#(/\x./\f./\y.h(x, /\z.f z, y), g(X), Z) 1.83/1.11 2] iszero#(X, Y) =#> h#(Z, /\x.F x, U) 1.83/1.11 3] iszero#(X, Y) =#> g#(X) 1.83/1.11 4] rec#(F, g(0), X) =#> g#(X) 1.83/1.11 5] rec#(F, h(X, G, 0), Y) =#> h#(X, G, Y) 1.83/1.11 6] rec#(F, iszero(X, 0), Y) =#> iszero#(X, Y) 1.83/1.11 1.83/1.11 Rules R_0: 1.83/1.11 1.83/1.11 rec(F, ~AP1(G, 0), X) => G X 1.83/1.11 g(X) => true 1.83/1.11 h(X, F, Y) => false 1.83/1.11 iszero(X, Y) => ~AP1(/\x.rec(/\y./\f./\z.h(y, /\u.f u, z), g(X), x), Y) 1.83/1.11 rec(F, g(0), X) => g(X) 1.83/1.11 rec(F, h(X, G, 0), Y) => h(X, G, Y) 1.83/1.11 rec(F, iszero(X, 0), Y) => iszero(X, Y) 1.83/1.11 ~AP1(F, X) => F X 1.83/1.11 1.83/1.11 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 1.83/1.11 1.83/1.11 We consider the dependency pair problem (P_0, R_0, static, formative). 1.83/1.11 1.83/1.11 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 1.83/1.11 1.83/1.11 * 0 : 1.83/1.11 * 1 : 4 1.83/1.11 * 2 : 1.83/1.11 * 3 : 1.83/1.11 * 4 : 1.83/1.11 * 5 : 1.83/1.11 * 6 : 0, 1, 2, 3 1.83/1.11 1.83/1.11 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 1.83/1.11 1.83/1.11 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 1.83/1.11 1.83/1.11 1.83/1.11 +++ Citations +++ 1.83/1.11 1.83/1.11 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 1.83/1.11 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 1.83/1.11 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 1.83/1.11 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 1.83/1.11 EOF