81.24/81.30 MAYBE 81.24/81.31 We consider the system theBenchmark. 81.24/81.31 81.24/81.31 Alphabet: 81.24/81.31 81.24/81.31 cons : [] --> a -> alist -> alist 81.24/81.31 map : [] --> (a -> a) -> alist -> alist 81.24/81.31 nil : [] --> alist 81.24/81.31 o : [] --> (a -> a) -> (a -> a) -> a -> a 81.24/81.31 xap : [] --> (a -> a) -> a -> a 81.24/81.31 81.24/81.31 Rules: 81.24/81.31 81.24/81.31 map (/\x.xap f x) nil => nil 81.24/81.31 map (/\x.xap f x) (cons y z) => cons (xap f y) (map (/\u.xap f u) z) 81.24/81.31 map (/\x.xap f x) (map (/\y.xap g y) z) => map (o (/\u.xap f u) (/\v.xap g v)) z 81.24/81.31 o (/\x.f x) (/\y.g y) z => f (g z) 81.24/81.31 xap f x => f x 81.24/81.31 81.24/81.31 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 81.24/81.31 81.24/81.31 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 81.24/81.31 81.24/81.31 Alphabet: 81.24/81.31 81.24/81.31 cons : [a * alist] --> alist 81.24/81.31 map : [a -> a * alist] --> alist 81.24/81.31 nil : [] --> alist 81.24/81.31 o : [a -> a * a -> a] --> a -> a 81.24/81.31 xap : [a -> a * a] --> a 81.24/81.31 ~AP1 : [a -> a * a] --> a 81.24/81.31 81.24/81.31 Rules: 81.24/81.31 81.24/81.31 map(/\x.xap(F, x), nil) => nil 81.24/81.31 map(/\x.xap(F, x), cons(X, Y)) => cons(xap(F, X), map(/\y.xap(F, y), Y)) 81.24/81.31 map(/\x.xap(F, x), map(/\y.xap(G, y), X)) => map(o(/\z.xap(F, z), /\u.xap(G, u)), X) 81.24/81.31 o(/\x.~AP1(F, x), /\y.~AP1(G, y)) X => ~AP1(F, ~AP1(G, X)) 81.24/81.31 xap(F, X) => ~AP1(F, X) 81.24/81.31 o(/\x.o(F, G) x, /\y.~AP1(H, y)) X => o(F, G) ~AP1(H, X) 81.24/81.31 o(/\x.xap(F, x), /\y.~AP1(G, y)) X => xap(F, ~AP1(G, X)) 81.24/81.31 o(/\x.~AP1(F, x), /\y.o(G, H) y) X => ~AP1(F, o(G, H) X) 81.24/81.31 o(/\x.~AP1(F, x), /\y.xap(G, y)) X => ~AP1(F, xap(G, X)) 81.24/81.31 o(/\x.o(F, G) x, /\y.o(H, I) y) X => o(F, G) (o(H, I) X) 81.24/81.31 o(/\x.o(F, G) x, /\y.xap(H, y)) X => o(F, G) xap(H, X) 81.24/81.31 o(/\x.xap(F, x), /\y.o(G, H) y) X => xap(F, o(G, H) X) 81.24/81.31 o(/\x.xap(F, x), /\y.xap(G, y)) X => xap(F, xap(G, X)) 81.24/81.31 ~AP1(F, X) => F X 81.24/81.31 81.24/81.31 81.24/81.31 +++ Citations +++ 81.24/81.31 81.24/81.31 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 81.32/81.40 EOF