0.00/0.01 YES 0.00/0.02 We consider the system theBenchmark. 0.00/0.02 0.00/0.02 Alphabet: 0.00/0.02 0.00/0.02 lim : [] --> (N -> O) -> O 0.00/0.02 plus : [] --> O -> O -> O 0.00/0.02 s : [] --> O -> O 0.00/0.02 z : [] --> O 0.00/0.02 0.00/0.02 Rules: 0.00/0.02 0.00/0.02 plus z x => x 0.00/0.02 plus (s x) y => s (plus x y) 0.00/0.02 plus (lim (/\x.f x)) y => lim (/\u.plus (f u) y) 0.00/0.02 0.00/0.02 Using the transformations described in [Kop11], this system can be brought in a form without leading free variables in the left-hand side, and where the left-hand side of a variable is always a functional term or application headed by a functional term. 0.00/0.02 0.00/0.02 We now transform the resulting AFS into an AFSM by replacing all free variables by meta-variables (with arity 0). This leads to the following AFSM: 0.00/0.02 0.00/0.02 Alphabet: 0.00/0.02 0.00/0.02 lim : [N -> O] --> O 0.00/0.02 plus : [O * O] --> O 0.00/0.02 s : [O] --> O 0.00/0.02 z : [] --> O 0.00/0.02 ~AP1 : [N -> O * N] --> O 0.00/0.02 0.00/0.02 Rules: 0.00/0.02 0.00/0.02 plus(z, X) => X 0.00/0.02 plus(s(X), Y) => s(plus(X, Y)) 0.00/0.02 plus(lim(/\x.~AP1(F, x)), X) => lim(/\y.plus(~AP1(F, y), X)) 0.00/0.02 ~AP1(F, X) => F X 0.00/0.02 0.00/0.02 Symbol ~AP1 is an encoding for application that is only used in innocuous ways. We can simplify the program (without losing non-termination) by removing it. This gives: 0.00/0.02 0.00/0.02 Alphabet: 0.00/0.02 0.00/0.02 lim : [N -> O] --> O 0.00/0.02 plus : [O * O] --> O 0.00/0.02 s : [O] --> O 0.00/0.02 z : [] --> O 0.00/0.02 0.00/0.02 Rules: 0.00/0.02 0.00/0.02 plus(z, X) => X 0.00/0.02 plus(s(X), Y) => s(plus(X, Y)) 0.00/0.02 plus(lim(/\x.X(x)), Y) => lim(/\y.plus(X(y), Y)) 0.00/0.02 0.00/0.02 We use rule removal, following [Kop12, Theorem 2.23]. 0.00/0.02 0.00/0.02 This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 0.00/0.02 0.00/0.02 plus(z, X) >? X 0.00/0.02 plus(s(X), Y) >? s(plus(X, Y)) 0.00/0.02 plus(lim(/\x.X(x)), Y) >? lim(/\y.plus(X(y), Y)) 0.00/0.02 0.00/0.02 We orient these requirements with a polynomial interpretation in the natural numbers. 0.00/0.02 0.00/0.02 The following interpretation satisfies the requirements: 0.00/0.02 0.00/0.02 lim = \G0.3 + G0(0) 0.00/0.02 plus = \y0y1.3 + y1 + 3y0 0.00/0.02 s = \y0.3 + y0 0.00/0.02 z = 3 0.00/0.02 0.00/0.02 Using this interpretation, the requirements translate to: 0.00/0.02 0.00/0.02 [[plus(z, _x0)]] = 12 + x0 > x0 = [[_x0]] 0.00/0.02 [[plus(s(_x0), _x1)]] = 12 + x1 + 3x0 > 6 + x1 + 3x0 = [[s(plus(_x0, _x1))]] 0.00/0.02 [[plus(lim(/\x._x0(x)), _x1)]] = 12 + x1 + 3F0(0) > 6 + x1 + 3F0(0) = [[lim(/\x.plus(_x0(x), _x1))]] 0.00/0.02 0.00/0.02 We can thus remove the following rules: 0.00/0.02 0.00/0.02 plus(z, X) => X 0.00/0.02 plus(s(X), Y) => s(plus(X, Y)) 0.00/0.02 plus(lim(/\x.X(x)), Y) => lim(/\y.plus(X(y), Y)) 0.00/0.02 0.00/0.02 All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. 0.00/0.02 0.00/0.02 0.00/0.02 +++ Citations +++ 0.00/0.02 0.00/0.02 [Kop11] C. Kop. Simplifying Algebraic Functional Systems. In Proceedings of CAI 2011, volume 6742 of LNCS. 201--215, Springer, 2011. 0.00/0.02 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 0.00/0.02 EOF