0.00/0.04 YES 0.00/0.04 We consider the system theBenchmark. 0.00/0.04 0.00/0.04 Alphabet: 0.00/0.04 0.00/0.04 cons : [a * c] --> c 0.00/0.04 consif : [b * a * c] --> c 0.00/0.04 false : [] --> b 0.00/0.04 filter : [a -> b * c] --> c 0.00/0.04 nil : [] --> c 0.00/0.04 true : [] --> b 0.00/0.04 0.00/0.04 Rules: 0.00/0.04 0.00/0.04 consif(true, x, y) => cons(x, y) 0.00/0.04 consif(false, x, y) => y 0.00/0.04 filter(f, nil) => nil 0.00/0.04 filter(f, cons(x, y)) => consif(f x, x, filter(f, y)) 0.00/0.04 0.00/0.04 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 0.00/0.04 0.00/0.04 We use rule removal, following [Kop12, Theorem 2.23]. 0.00/0.04 0.00/0.04 This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): 0.00/0.04 0.00/0.04 consif(true, X, Y) >? cons(X, Y) 0.00/0.04 consif(false, X, Y) >? Y 0.00/0.04 filter(F, nil) >? nil 0.00/0.04 filter(F, cons(X, Y)) >? consif(F X, X, filter(F, Y)) 0.00/0.04 0.00/0.04 We orient these requirements with a polynomial interpretation in the natural numbers. 0.00/0.04 0.00/0.04 The following interpretation satisfies the requirements: 0.00/0.04 0.00/0.04 cons = \y0y1.2 + y0 + y1 0.00/0.04 consif = \y0y1y2.y0 + y1 + y2 0.00/0.04 false = 3 0.00/0.04 filter = \G0y1.2y1 + G0(y1) + y1G0(y1) 0.00/0.04 nil = 1 0.00/0.04 true = 3 0.00/0.04 0.00/0.04 Using this interpretation, the requirements translate to: 0.00/0.04 0.00/0.04 [[consif(true, _x0, _x1)]] = 3 + x0 + x1 > 2 + x0 + x1 = [[cons(_x0, _x1)]] 0.00/0.04 [[consif(false, _x0, _x1)]] = 3 + x0 + x1 > x1 = [[_x1]] 0.00/0.04 [[filter(_F0, nil)]] = 2 + 2F0(1) > 1 = [[nil]] 0.00/0.04 [[filter(_F0, cons(_x1, _x2))]] = 4 + 2x1 + 2x2 + 3F0(2 + x1 + x2) + x1F0(2 + x1 + x2) + x2F0(2 + x1 + x2) > 2x1 + 2x2 + F0(x1) + F0(x2) + x2F0(x2) = [[consif(_F0 _x1, _x1, filter(_F0, _x2))]] 0.00/0.04 0.00/0.04 We can thus remove the following rules: 0.00/0.04 0.00/0.04 consif(true, X, Y) => cons(X, Y) 0.00/0.04 consif(false, X, Y) => Y 0.00/0.04 filter(F, nil) => nil 0.00/0.04 filter(F, cons(X, Y)) => consif(F X, X, filter(F, Y)) 0.00/0.04 0.00/0.04 All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. 0.00/0.04 0.00/0.04 0.00/0.04 +++ Citations +++ 0.00/0.04 0.00/0.04 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 0.00/0.04 EOF