4.15/2.06 YES 4.31/2.09 We consider the system theBenchmark. 4.31/2.09 4.31/2.09 Alphabet: 4.31/2.09 4.31/2.09 0 : [] --> b 4.31/2.09 cons : [b * c] --> c 4.31/2.09 eq : [b * b] --> a 4.31/2.09 false : [] --> a 4.31/2.09 filter : [b -> a * c] --> c 4.31/2.09 filter2 : [a * b -> a * b * c] --> c 4.31/2.09 if!fac6220min : [a * c] --> b 4.31/2.09 if!fac6220replace : [a * b * b * c] --> c 4.31/2.09 le : [b * b] --> a 4.31/2.09 map : [b -> b * c] --> c 4.31/2.09 min : [c] --> b 4.31/2.09 nil : [] --> c 4.31/2.09 replace : [b * b * c] --> c 4.31/2.09 s : [b] --> b 4.31/2.09 sort : [c] --> c 4.31/2.09 true : [] --> a 4.31/2.09 4.31/2.09 Rules: 4.31/2.09 4.31/2.09 eq(0, 0) => true 4.31/2.09 eq(0, s(x)) => false 4.31/2.09 eq(s(x), 0) => false 4.31/2.09 eq(s(x), s(y)) => eq(x, y) 4.31/2.09 le(0, x) => true 4.31/2.09 le(s(x), 0) => false 4.31/2.09 le(s(x), s(y)) => le(x, y) 4.31/2.09 min(cons(0, nil)) => 0 4.31/2.09 min(cons(s(x), nil)) => s(x) 4.31/2.09 min(cons(x, cons(y, z))) => if!fac6220min(le(x, y), cons(x, cons(y, z))) 4.31/2.09 if!fac6220min(true, cons(x, cons(y, z))) => min(cons(x, z)) 4.31/2.09 if!fac6220min(false, cons(x, cons(y, z))) => min(cons(y, z)) 4.31/2.09 replace(x, y, nil) => nil 4.31/2.09 replace(x, y, cons(z, u)) => if!fac6220replace(eq(x, z), x, y, cons(z, u)) 4.31/2.09 if!fac6220replace(true, x, y, cons(z, u)) => cons(y, u) 4.31/2.09 if!fac6220replace(false, x, y, cons(z, u)) => cons(z, replace(x, y, u)) 4.31/2.09 sort(nil) => nil 4.31/2.09 sort(cons(x, y)) => cons(min(cons(x, y)), sort(replace(min(cons(x, y)), x, y))) 4.31/2.09 map(f, nil) => nil 4.31/2.09 map(f, cons(x, y)) => cons(f x, map(f, y)) 4.31/2.09 filter(f, nil) => nil 4.31/2.09 filter(f, cons(x, y)) => filter2(f x, f, x, y) 4.31/2.09 filter2(true, f, x, y) => cons(x, filter(f, y)) 4.31/2.09 filter2(false, f, x, y) => filter(f, y) 4.31/2.09 4.31/2.09 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 4.31/2.09 4.31/2.09 We observe that the rules contain a first-order subset: 4.31/2.09 4.31/2.09 eq(0, 0) => true 4.31/2.09 eq(0, s(X)) => false 4.31/2.09 eq(s(X), 0) => false 4.31/2.09 eq(s(X), s(Y)) => eq(X, Y) 4.31/2.09 le(0, X) => true 4.31/2.09 le(s(X), 0) => false 4.31/2.09 le(s(X), s(Y)) => le(X, Y) 4.31/2.09 min(cons(0, nil)) => 0 4.31/2.09 min(cons(s(X), nil)) => s(X) 4.31/2.09 min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) 4.31/2.09 if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) 4.31/2.09 if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) 4.31/2.09 replace(X, Y, nil) => nil 4.31/2.09 replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) 4.31/2.09 if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) 4.31/2.09 if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) 4.31/2.09 sort(nil) => nil 4.31/2.09 sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) 4.31/2.09 4.31/2.09 Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. 4.31/2.09 4.31/2.09 According to the external first-order termination prover, this system is indeed terminating: 4.31/2.09 4.31/2.09 || proof of resources/system.trs 4.31/2.09 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || Termination w.r.t. Q of the given QTRS could be proven: 4.31/2.09 || 4.31/2.09 || (0) QTRS 4.31/2.09 || (1) Overlay + Local Confluence [EQUIVALENT] 4.31/2.09 || (2) QTRS 4.31/2.09 || (3) DependencyPairsProof [EQUIVALENT] 4.31/2.09 || (4) QDP 4.31/2.09 || (5) DependencyGraphProof [EQUIVALENT] 4.31/2.09 || (6) AND 4.31/2.09 || (7) QDP 4.31/2.09 || (8) UsableRulesProof [EQUIVALENT] 4.31/2.09 || (9) QDP 4.31/2.09 || (10) QReductionProof [EQUIVALENT] 4.31/2.09 || (11) QDP 4.31/2.09 || (12) QDPSizeChangeProof [EQUIVALENT] 4.31/2.09 || (13) YES 4.31/2.09 || (14) QDP 4.31/2.09 || (15) UsableRulesProof [EQUIVALENT] 4.31/2.09 || (16) QDP 4.31/2.09 || (17) QReductionProof [EQUIVALENT] 4.31/2.09 || (18) QDP 4.31/2.09 || (19) QDPOrderProof [EQUIVALENT] 4.31/2.09 || (20) QDP 4.31/2.09 || (21) PisEmptyProof [EQUIVALENT] 4.31/2.09 || (22) YES 4.31/2.09 || (23) QDP 4.31/2.09 || (24) UsableRulesProof [EQUIVALENT] 4.31/2.09 || (25) QDP 4.31/2.09 || (26) QReductionProof [EQUIVALENT] 4.31/2.09 || (27) QDP 4.31/2.09 || (28) QDPSizeChangeProof [EQUIVALENT] 4.31/2.09 || (29) YES 4.31/2.09 || (30) QDP 4.31/2.09 || (31) UsableRulesProof [EQUIVALENT] 4.31/2.09 || (32) QDP 4.31/2.09 || (33) QReductionProof [EQUIVALENT] 4.31/2.09 || (34) QDP 4.31/2.09 || (35) QDPSizeChangeProof [EQUIVALENT] 4.31/2.09 || (36) YES 4.31/2.09 || (37) QDP 4.31/2.09 || (38) UsableRulesProof [EQUIVALENT] 4.31/2.09 || (39) QDP 4.31/2.09 || (40) QReductionProof [EQUIVALENT] 4.31/2.09 || (41) QDP 4.31/2.09 || (42) QDPOrderProof [EQUIVALENT] 4.31/2.09 || (43) QDP 4.31/2.09 || (44) PisEmptyProof [EQUIVALENT] 4.31/2.09 || (45) YES 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (0) 4.31/2.09 || Obligation: 4.31/2.09 || Q restricted rewrite system: 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || Q is empty. 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (1) Overlay + Local Confluence (EQUIVALENT) 4.31/2.09 || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (2) 4.31/2.09 || Obligation: 4.31/2.09 || Q restricted rewrite system: 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (3) DependencyPairsProof (EQUIVALENT) 4.31/2.09 || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (4) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) 4.31/2.09 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> LE(%X, %Y) 4.31/2.09 || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) 4.31/2.09 || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) 4.31/2.09 || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || REPLACE(%X, %Y, cons(%Z, %U)) -> EQ(%X, %Z) 4.31/2.09 || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) 4.31/2.09 || SORT(cons(%X, %Y)) -> MIN(cons(%X, %Y)) 4.31/2.09 || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) 4.31/2.09 || SORT(cons(%X, %Y)) -> REPLACE(min(cons(%X, %Y)), %X, %Y) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (5) DependencyGraphProof (EQUIVALENT) 4.31/2.09 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 4 less nodes. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (6) 4.31/2.09 || Complex Obligation (AND) 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (7) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (8) UsableRulesProof (EQUIVALENT) 4.31/2.09 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (9) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 4.31/2.09 || 4.31/2.09 || R is empty. 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (10) QReductionProof (EQUIVALENT) 4.31/2.09 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (11) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || LE(s(%X), s(%Y)) -> LE(%X, %Y) 4.31/2.09 || 4.31/2.09 || R is empty. 4.31/2.09 || Q is empty. 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (12) QDPSizeChangeProof (EQUIVALENT) 4.31/2.09 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.31/2.09 || 4.31/2.09 || From the DPs we obtained the following set of size-change graphs: 4.31/2.09 || *LE(s(%X), s(%Y)) -> LE(%X, %Y) 4.31/2.09 || The graph contains the following edges 1 > 1, 2 > 2 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (13) 4.31/2.09 || YES 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (14) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) 4.31/2.09 || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (15) UsableRulesProof (EQUIVALENT) 4.31/2.09 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (16) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) 4.31/2.09 || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (17) QReductionProof (EQUIVALENT) 4.31/2.09 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (18) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) 4.31/2.09 || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (19) QDPOrderProof (EQUIVALENT) 4.31/2.09 || We use the reduction pair processor [LPAR04,JAR06]. 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || The following pairs can be oriented strictly and are deleted. 4.31/2.09 || 4.31/2.09 || MIN(cons(%X, cons(%Y, %Z))) -> IF!FAC6220MIN(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || IF!FAC6220MIN(true, cons(%X, cons(%Y, %Z))) -> MIN(cons(%X, %Z)) 4.31/2.09 || IF!FAC6220MIN(false, cons(%X, cons(%Y, %Z))) -> MIN(cons(%Y, %Z)) 4.31/2.09 || The remaining pairs can at least be oriented weakly. 4.31/2.09 || Used ordering: Combined order from the following AFS and order. 4.31/2.09 || MIN(x1) = MIN(x1) 4.31/2.09 || 4.31/2.09 || cons(x1, x2) = cons(x2) 4.31/2.09 || 4.31/2.09 || IF!FAC6220MIN(x1, x2) = IF!FAC6220MIN(x1, x2) 4.31/2.09 || 4.31/2.09 || le(x1, x2) = le 4.31/2.09 || 4.31/2.09 || true = true 4.31/2.09 || 4.31/2.09 || false = false 4.31/2.09 || 4.31/2.09 || 0 = 0 4.31/2.09 || 4.31/2.09 || s(x1) = s 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || Recursive path order with status [RPO]. 4.31/2.09 || Quasi-Precedence: [cons_1, le, true] > [MIN_1, false] > IF!FAC6220MIN_2 4.31/2.09 || 0 > IF!FAC6220MIN_2 4.31/2.09 || s > IF!FAC6220MIN_2 4.31/2.09 || 4.31/2.09 || Status: MIN_1: [1] 4.31/2.09 || cons_1: multiset status 4.31/2.09 || IF!FAC6220MIN_2: multiset status 4.31/2.09 || le: multiset status 4.31/2.09 || true: multiset status 4.31/2.09 || false: multiset status 4.31/2.09 || 0: multiset status 4.31/2.09 || s: [] 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 4.31/2.09 || 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (20) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || P is empty. 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (21) PisEmptyProof (EQUIVALENT) 4.31/2.09 || The TRS P is empty. Hence, there is no (P,Q,R) chain. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (22) 4.31/2.09 || YES 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (23) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (24) UsableRulesProof (EQUIVALENT) 4.31/2.09 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (25) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) 4.31/2.09 || 4.31/2.09 || R is empty. 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (26) QReductionProof (EQUIVALENT) 4.31/2.09 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (27) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || EQ(s(%X), s(%Y)) -> EQ(%X, %Y) 4.31/2.09 || 4.31/2.09 || R is empty. 4.31/2.09 || Q is empty. 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (28) QDPSizeChangeProof (EQUIVALENT) 4.31/2.09 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.31/2.09 || 4.31/2.09 || From the DPs we obtained the following set of size-change graphs: 4.31/2.09 || *EQ(s(%X), s(%Y)) -> EQ(%X, %Y) 4.31/2.09 || The graph contains the following edges 1 > 1, 2 > 2 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (29) 4.31/2.09 || YES 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (30) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (31) UsableRulesProof (EQUIVALENT) 4.31/2.09 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (32) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (33) QReductionProof (EQUIVALENT) 4.31/2.09 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 4.31/2.09 || 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (34) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (35) QDPSizeChangeProof (EQUIVALENT) 4.31/2.09 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.31/2.09 || 4.31/2.09 || From the DPs we obtained the following set of size-change graphs: 4.31/2.09 || *IF!FAC6220REPLACE(false, %X, %Y, cons(%Z, %U)) -> REPLACE(%X, %Y, %U) 4.31/2.09 || The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || *REPLACE(%X, %Y, cons(%Z, %U)) -> IF!FAC6220REPLACE(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (36) 4.31/2.09 || YES 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (37) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || sort(nil) -> nil 4.31/2.09 || sort(cons(%X, %Y)) -> cons(min(cons(%X, %Y)), sort(replace(min(cons(%X, %Y)), %X, %Y))) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (38) UsableRulesProof (EQUIVALENT) 4.31/2.09 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (39) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (40) QReductionProof (EQUIVALENT) 4.31/2.09 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 4.31/2.09 || 4.31/2.09 || sort(nil) 4.31/2.09 || sort(cons(x0, x1)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (41) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || The TRS P consists of the following rules: 4.31/2.09 || 4.31/2.09 || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) 4.31/2.09 || 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (42) QDPOrderProof (EQUIVALENT) 4.31/2.09 || We use the reduction pair processor [LPAR04,JAR06]. 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || The following pairs can be oriented strictly and are deleted. 4.31/2.09 || 4.31/2.09 || SORT(cons(%X, %Y)) -> SORT(replace(min(cons(%X, %Y)), %X, %Y)) 4.31/2.09 || The remaining pairs can at least be oriented weakly. 4.31/2.09 || Used ordering: Combined order from the following AFS and order. 4.31/2.09 || SORT(x1) = x1 4.31/2.09 || 4.31/2.09 || cons(x1, x2) = cons(x2) 4.31/2.09 || 4.31/2.09 || replace(x1, x2, x3) = x3 4.31/2.09 || 4.31/2.09 || min(x1) = x1 4.31/2.09 || 4.31/2.09 || 0 = 0 4.31/2.09 || 4.31/2.09 || nil = nil 4.31/2.09 || 4.31/2.09 || s(x1) = s 4.31/2.09 || 4.31/2.09 || if!fac6220min(x1, x2) = if!fac6220min(x1, x2) 4.31/2.09 || 4.31/2.09 || le(x1, x2) = x2 4.31/2.09 || 4.31/2.09 || true = true 4.31/2.09 || 4.31/2.09 || false = false 4.31/2.09 || 4.31/2.09 || if!fac6220replace(x1, x2, x3, x4) = x4 4.31/2.09 || 4.31/2.09 || eq(x1, x2) = eq(x1, x2) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || Recursive path order with status [RPO]. 4.31/2.09 || Quasi-Precedence: 0 > false 4.31/2.09 || [s, eq_2] > false 4.31/2.09 || if!fac6220min_2 > cons_1 4.31/2.09 || true > cons_1 4.31/2.09 || 4.31/2.09 || Status: cons_1: [1] 4.31/2.09 || 0: multiset status 4.31/2.09 || nil: multiset status 4.31/2.09 || s: multiset status 4.31/2.09 || if!fac6220min_2: multiset status 4.31/2.09 || true: multiset status 4.31/2.09 || false: multiset status 4.31/2.09 || eq_2: multiset status 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 4.31/2.09 || 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || 4.31/2.09 || 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (43) 4.31/2.09 || Obligation: 4.31/2.09 || Q DP problem: 4.31/2.09 || P is empty. 4.31/2.09 || The TRS R consists of the following rules: 4.31/2.09 || 4.31/2.09 || min(cons(0, nil)) -> 0 4.31/2.09 || min(cons(s(%X), nil)) -> s(%X) 4.31/2.09 || min(cons(%X, cons(%Y, %Z))) -> if!fac6220min(le(%X, %Y), cons(%X, cons(%Y, %Z))) 4.31/2.09 || if!fac6220min(true, cons(%X, cons(%Y, %Z))) -> min(cons(%X, %Z)) 4.31/2.09 || if!fac6220min(false, cons(%X, cons(%Y, %Z))) -> min(cons(%Y, %Z)) 4.31/2.09 || replace(%X, %Y, nil) -> nil 4.31/2.09 || replace(%X, %Y, cons(%Z, %U)) -> if!fac6220replace(eq(%X, %Z), %X, %Y, cons(%Z, %U)) 4.31/2.09 || eq(0, 0) -> true 4.31/2.09 || eq(0, s(%X)) -> false 4.31/2.09 || eq(s(%X), 0) -> false 4.31/2.09 || eq(s(%X), s(%Y)) -> eq(%X, %Y) 4.31/2.09 || if!fac6220replace(true, %X, %Y, cons(%Z, %U)) -> cons(%Y, %U) 4.31/2.09 || if!fac6220replace(false, %X, %Y, cons(%Z, %U)) -> cons(%Z, replace(%X, %Y, %U)) 4.31/2.09 || le(0, %X) -> true 4.31/2.09 || le(s(%X), 0) -> false 4.31/2.09 || le(s(%X), s(%Y)) -> le(%X, %Y) 4.31/2.09 || 4.31/2.09 || The set Q consists of the following terms: 4.31/2.09 || 4.31/2.09 || eq(0, 0) 4.31/2.09 || eq(0, s(x0)) 4.31/2.09 || eq(s(x0), 0) 4.31/2.09 || eq(s(x0), s(x1)) 4.31/2.09 || le(0, x0) 4.31/2.09 || le(s(x0), 0) 4.31/2.09 || le(s(x0), s(x1)) 4.31/2.09 || min(cons(0, nil)) 4.31/2.09 || min(cons(s(x0), nil)) 4.31/2.09 || min(cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(true, cons(x0, cons(x1, x2))) 4.31/2.09 || if!fac6220min(false, cons(x0, cons(x1, x2))) 4.31/2.09 || replace(x0, x1, nil) 4.31/2.09 || replace(x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(true, x0, x1, cons(x2, x3)) 4.31/2.09 || if!fac6220replace(false, x0, x1, cons(x2, x3)) 4.31/2.09 || 4.31/2.09 || We have to consider all minimal (P,Q,R)-chains. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (44) PisEmptyProof (EQUIVALENT) 4.31/2.09 || The TRS P is empty. Hence, there is no (P,Q,R) chain. 4.31/2.09 || ---------------------------------------- 4.31/2.09 || 4.31/2.09 || (45) 4.31/2.09 || YES 4.31/2.09 || 4.31/2.09 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 4.31/2.09 4.31/2.09 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 4.31/2.09 4.31/2.09 Dependency Pairs P_0: 4.31/2.09 4.31/2.09 0] map#(F, cons(X, Y)) =#> map#(F, Y) 4.31/2.09 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 4.31/2.09 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 4.31/2.09 3] filter2#(false, F, X, Y) =#> filter#(F, Y) 4.31/2.09 4.31/2.09 Rules R_0: 4.31/2.09 4.31/2.09 eq(0, 0) => true 4.31/2.09 eq(0, s(X)) => false 4.31/2.09 eq(s(X), 0) => false 4.31/2.09 eq(s(X), s(Y)) => eq(X, Y) 4.31/2.09 le(0, X) => true 4.31/2.09 le(s(X), 0) => false 4.31/2.09 le(s(X), s(Y)) => le(X, Y) 4.31/2.09 min(cons(0, nil)) => 0 4.31/2.09 min(cons(s(X), nil)) => s(X) 4.31/2.09 min(cons(X, cons(Y, Z))) => if!fac6220min(le(X, Y), cons(X, cons(Y, Z))) 4.31/2.09 if!fac6220min(true, cons(X, cons(Y, Z))) => min(cons(X, Z)) 4.31/2.09 if!fac6220min(false, cons(X, cons(Y, Z))) => min(cons(Y, Z)) 4.31/2.09 replace(X, Y, nil) => nil 4.31/2.09 replace(X, Y, cons(Z, U)) => if!fac6220replace(eq(X, Z), X, Y, cons(Z, U)) 4.31/2.09 if!fac6220replace(true, X, Y, cons(Z, U)) => cons(Y, U) 4.31/2.09 if!fac6220replace(false, X, Y, cons(Z, U)) => cons(Z, replace(X, Y, U)) 4.31/2.09 sort(nil) => nil 4.31/2.09 sort(cons(X, Y)) => cons(min(cons(X, Y)), sort(replace(min(cons(X, Y)), X, Y))) 4.31/2.09 map(F, nil) => nil 4.31/2.09 map(F, cons(X, Y)) => cons(F X, map(F, Y)) 4.31/2.09 filter(F, nil) => nil 4.31/2.09 filter(F, cons(X, Y)) => filter2(F X, F, X, Y) 4.31/2.09 filter2(true, F, X, Y) => cons(X, filter(F, Y)) 4.31/2.09 filter2(false, F, X, Y) => filter(F, Y) 4.31/2.09 4.31/2.09 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 4.31/2.09 4.31/2.09 We consider the dependency pair problem (P_0, R_0, static, formative). 4.31/2.09 4.31/2.09 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 4.31/2.09 4.31/2.09 * 0 : 0 4.31/2.09 * 1 : 2, 3 4.31/2.09 * 2 : 1 4.31/2.09 * 3 : 1 4.31/2.09 4.31/2.09 This graph has the following strongly connected components: 4.31/2.09 4.31/2.09 P_1: 4.31/2.09 4.31/2.09 map#(F, cons(X, Y)) =#> map#(F, Y) 4.31/2.09 4.31/2.09 P_2: 4.31/2.09 4.31/2.09 filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 4.31/2.09 filter2#(true, F, X, Y) =#> filter#(F, Y) 4.31/2.09 filter2#(false, F, X, Y) =#> filter#(F, Y) 4.31/2.09 4.31/2.09 By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). 4.31/2.09 4.31/2.09 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_2, R_0, static, formative) is finite. 4.31/2.09 4.31/2.09 We consider the dependency pair problem (P_2, R_0, static, formative). 4.31/2.09 4.31/2.09 We apply the subterm criterion with the following projection function: 4.31/2.09 4.31/2.09 nu(filter2#) = 4 4.31/2.09 nu(filter#) = 2 4.31/2.09 4.31/2.09 Thus, we can orient the dependency pairs as follows: 4.31/2.09 4.31/2.09 nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) 4.31/2.09 nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 4.31/2.09 nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 4.31/2.09 4.31/2.09 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_2, R_0, static, f) by (P_3, R_0, static, f), where P_3 contains: 4.31/2.09 4.31/2.09 filter2#(true, F, X, Y) =#> filter#(F, Y) 4.31/2.09 filter2#(false, F, X, Y) =#> filter#(F, Y) 4.31/2.09 4.31/2.09 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_3, R_0, static, formative) is finite. 4.31/2.09 4.31/2.09 We consider the dependency pair problem (P_3, R_0, static, formative). 4.31/2.09 4.31/2.09 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 4.31/2.09 4.31/2.09 * 0 : 4.31/2.09 * 1 : 4.31/2.09 4.31/2.09 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 4.31/2.09 4.31/2.09 Thus, the original system is terminating if (P_1, R_0, static, formative) is finite. 4.31/2.09 4.31/2.09 We consider the dependency pair problem (P_1, R_0, static, formative). 4.31/2.09 4.31/2.09 We apply the subterm criterion with the following projection function: 4.31/2.09 4.31/2.09 nu(map#) = 2 4.31/2.09 4.31/2.09 Thus, we can orient the dependency pairs as follows: 4.31/2.09 4.31/2.09 nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) 4.31/2.09 4.31/2.09 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_1, R_0, static, f) by ({}, R_0, static, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. 4.31/2.09 4.31/2.09 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 4.31/2.09 4.31/2.09 4.31/2.09 +++ Citations +++ 4.31/2.09 4.31/2.09 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 4.31/2.09 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 4.31/2.09 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 4.31/2.09 EOF