2.57/1.30 YES 2.57/1.31 We consider the system theBenchmark. 2.57/1.31 2.57/1.31 Alphabet: 2.57/1.31 2.57/1.31 0 : [] --> c 2.57/1.31 cons : [c * d] --> d 2.57/1.31 false : [] --> b 2.57/1.31 filter : [c -> b * d] --> d 2.57/1.31 filter2 : [b * c -> b * c * d] --> d 2.57/1.31 map : [c -> c * d] --> d 2.57/1.31 nil : [] --> d 2.57/1.31 rev : [d] --> d 2.57/1.31 rev1 : [c * d] --> c 2.57/1.31 rev2 : [c * d] --> d 2.57/1.31 s : [a] --> c 2.57/1.31 true : [] --> b 2.57/1.31 2.57/1.31 Rules: 2.57/1.31 2.57/1.31 rev(nil) => nil 2.57/1.31 rev(cons(x, y)) => cons(rev1(x, y), rev2(x, y)) 2.57/1.31 rev1(0, nil) => 0 2.57/1.31 rev1(s(x), nil) => s(x) 2.57/1.31 rev1(x, cons(y, z)) => rev1(y, z) 2.57/1.31 rev2(x, nil) => nil 2.57/1.31 rev2(x, cons(y, z)) => rev(cons(x, rev2(y, z))) 2.57/1.31 map(f, nil) => nil 2.57/1.31 map(f, cons(x, y)) => cons(f x, map(f, y)) 2.57/1.31 filter(f, nil) => nil 2.57/1.31 filter(f, cons(x, y)) => filter2(f x, f, x, y) 2.57/1.31 filter2(true, f, x, y) => cons(x, filter(f, y)) 2.57/1.31 filter2(false, f, x, y) => filter(f, y) 2.57/1.31 2.57/1.31 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 2.57/1.31 2.57/1.31 We observe that the rules contain a first-order subset: 2.57/1.31 2.57/1.31 rev(nil) => nil 2.57/1.31 rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) 2.57/1.31 rev1(0, nil) => 0 2.57/1.31 rev1(s(X), nil) => s(X) 2.57/1.31 rev1(X, cons(Y, Z)) => rev1(Y, Z) 2.57/1.31 rev2(X, nil) => nil 2.57/1.31 rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) 2.57/1.31 2.57/1.31 Moreover, the system is orthogonal. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is terminating when seen as a many-sorted first-order TRS. 2.57/1.31 2.57/1.31 According to the external first-order termination prover, this system is indeed terminating: 2.57/1.31 2.57/1.31 || proof of resources/system.trs 2.57/1.31 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || Termination w.r.t. Q of the given QTRS could be proven: 2.57/1.31 || 2.57/1.31 || (0) QTRS 2.57/1.31 || (1) Overlay + Local Confluence [EQUIVALENT] 2.57/1.31 || (2) QTRS 2.57/1.31 || (3) DependencyPairsProof [EQUIVALENT] 2.57/1.31 || (4) QDP 2.57/1.31 || (5) DependencyGraphProof [EQUIVALENT] 2.57/1.31 || (6) AND 2.57/1.31 || (7) QDP 2.57/1.31 || (8) UsableRulesProof [EQUIVALENT] 2.57/1.31 || (9) QDP 2.57/1.31 || (10) QReductionProof [EQUIVALENT] 2.57/1.31 || (11) QDP 2.57/1.31 || (12) QDPSizeChangeProof [EQUIVALENT] 2.57/1.31 || (13) YES 2.57/1.31 || (14) QDP 2.57/1.31 || (15) UsableRulesProof [EQUIVALENT] 2.57/1.31 || (16) QDP 2.57/1.31 || (17) QDPOrderProof [EQUIVALENT] 2.57/1.31 || (18) QDP 2.57/1.31 || (19) DependencyGraphProof [EQUIVALENT] 2.57/1.31 || (20) TRUE 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (0) 2.57/1.31 || Obligation: 2.57/1.31 || Q restricted rewrite system: 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev(nil) -> nil 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || 2.57/1.31 || Q is empty. 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (1) Overlay + Local Confluence (EQUIVALENT) 2.57/1.31 || The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (2) 2.57/1.31 || Obligation: 2.57/1.31 || Q restricted rewrite system: 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev(nil) -> nil 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (3) DependencyPairsProof (EQUIVALENT) 2.57/1.31 || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (4) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV(cons(%X, %Y)) -> REV1(%X, %Y) 2.57/1.31 || REV(cons(%X, %Y)) -> REV2(%X, %Y) 2.57/1.31 || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev(nil) -> nil 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (5) DependencyGraphProof (EQUIVALENT) 2.57/1.31 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (6) 2.57/1.31 || Complex Obligation (AND) 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (7) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev(nil) -> nil 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (8) UsableRulesProof (EQUIVALENT) 2.57/1.31 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (9) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) 2.57/1.31 || 2.57/1.31 || R is empty. 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (10) QReductionProof (EQUIVALENT) 2.57/1.31 || We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (11) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) 2.57/1.31 || 2.57/1.31 || R is empty. 2.57/1.31 || Q is empty. 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (12) QDPSizeChangeProof (EQUIVALENT) 2.57/1.31 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 2.57/1.31 || 2.57/1.31 || From the DPs we obtained the following set of size-change graphs: 2.57/1.31 || *REV1(%X, cons(%Y, %Z)) -> REV1(%Y, %Z) 2.57/1.31 || The graph contains the following edges 2 > 1, 2 > 2 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (13) 2.57/1.31 || YES 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (14) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV(cons(%X, %Y)) -> REV2(%X, %Y) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev(nil) -> nil 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (15) UsableRulesProof (EQUIVALENT) 2.57/1.31 || As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (16) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV(cons(%X, %Y)) -> REV2(%X, %Y) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (17) QDPOrderProof (EQUIVALENT) 2.57/1.31 || We use the reduction pair processor [LPAR04,JAR06]. 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || The following pairs can be oriented strictly and are deleted. 2.57/1.31 || 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || REV2(%X, cons(%Y, %Z)) -> REV2(%Y, %Z) 2.57/1.31 || The remaining pairs can at least be oriented weakly. 2.57/1.31 || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 2.57/1.31 || 2.57/1.31 || POL( REV_1(x_1) ) = max{0, x_1 - 2} 2.57/1.31 || POL( cons_2(x_1, x_2) ) = x_2 + 2 2.57/1.31 || POL( rev2_2(x_1, x_2) ) = x_2 2.57/1.31 || POL( nil ) = 0 2.57/1.31 || POL( rev_1(x_1) ) = x_1 2.57/1.31 || POL( rev1_2(x_1, x_2) ) = x_2 2.57/1.31 || POL( 0 ) = 2 2.57/1.31 || POL( s_1(x_1) ) = x_1 + 1 2.57/1.31 || POL( REV2_2(x_1, x_2) ) = x_2 2.57/1.31 || 2.57/1.31 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 2.57/1.31 || 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || 2.57/1.31 || 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (18) 2.57/1.31 || Obligation: 2.57/1.31 || Q DP problem: 2.57/1.31 || The TRS P consists of the following rules: 2.57/1.31 || 2.57/1.31 || REV(cons(%X, %Y)) -> REV2(%X, %Y) 2.57/1.31 || 2.57/1.31 || The TRS R consists of the following rules: 2.57/1.31 || 2.57/1.31 || rev2(%X, nil) -> nil 2.57/1.31 || rev2(%X, cons(%Y, %Z)) -> rev(cons(%X, rev2(%Y, %Z))) 2.57/1.31 || rev(cons(%X, %Y)) -> cons(rev1(%X, %Y), rev2(%X, %Y)) 2.57/1.31 || rev1(0, nil) -> 0 2.57/1.31 || rev1(s(%X), nil) -> s(%X) 2.57/1.31 || rev1(%X, cons(%Y, %Z)) -> rev1(%Y, %Z) 2.57/1.31 || 2.57/1.31 || The set Q consists of the following terms: 2.57/1.31 || 2.57/1.31 || rev(nil) 2.57/1.31 || rev(cons(x0, x1)) 2.57/1.31 || rev1(0, nil) 2.57/1.31 || rev1(s(x0), nil) 2.57/1.31 || rev1(x0, cons(x1, x2)) 2.57/1.31 || rev2(x0, nil) 2.57/1.31 || rev2(x0, cons(x1, x2)) 2.57/1.31 || 2.57/1.31 || We have to consider all minimal (P,Q,R)-chains. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (19) DependencyGraphProof (EQUIVALENT) 2.57/1.31 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 2.57/1.31 || ---------------------------------------- 2.57/1.31 || 2.57/1.31 || (20) 2.57/1.31 || TRUE 2.57/1.31 || 2.57/1.31 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 2.57/1.31 2.57/1.31 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 2.57/1.31 2.57/1.31 Dependency Pairs P_0: 2.57/1.31 2.57/1.31 0] map#(F, cons(X, Y)) =#> map#(F, Y) 2.57/1.31 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2.57/1.31 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 2.57/1.31 3] filter2#(false, F, X, Y) =#> filter#(F, Y) 2.57/1.31 2.57/1.31 Rules R_0: 2.57/1.31 2.57/1.31 rev(nil) => nil 2.57/1.31 rev(cons(X, Y)) => cons(rev1(X, Y), rev2(X, Y)) 2.57/1.31 rev1(0, nil) => 0 2.57/1.31 rev1(s(X), nil) => s(X) 2.57/1.31 rev1(X, cons(Y, Z)) => rev1(Y, Z) 2.57/1.31 rev2(X, nil) => nil 2.57/1.31 rev2(X, cons(Y, Z)) => rev(cons(X, rev2(Y, Z))) 2.57/1.31 map(F, nil) => nil 2.57/1.31 map(F, cons(X, Y)) => cons(F X, map(F, Y)) 2.57/1.31 filter(F, nil) => nil 2.57/1.31 filter(F, cons(X, Y)) => filter2(F X, F, X, Y) 2.57/1.31 filter2(true, F, X, Y) => cons(X, filter(F, Y)) 2.57/1.31 filter2(false, F, X, Y) => filter(F, Y) 2.57/1.31 2.57/1.31 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 2.57/1.31 2.57/1.31 We consider the dependency pair problem (P_0, R_0, static, formative). 2.57/1.31 2.57/1.31 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 2.57/1.31 2.57/1.31 * 0 : 0 2.57/1.31 * 1 : 2, 3 2.57/1.31 * 2 : 1 2.57/1.31 * 3 : 1 2.57/1.31 2.57/1.31 This graph has the following strongly connected components: 2.57/1.31 2.57/1.31 P_1: 2.57/1.31 2.57/1.31 map#(F, cons(X, Y)) =#> map#(F, Y) 2.57/1.31 2.57/1.31 P_2: 2.57/1.31 2.57/1.31 filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 2.57/1.31 filter2#(true, F, X, Y) =#> filter#(F, Y) 2.57/1.31 filter2#(false, F, X, Y) =#> filter#(F, Y) 2.57/1.31 2.57/1.31 By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). 2.57/1.31 2.57/1.31 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_2, R_0, static, formative) is finite. 2.57/1.31 2.57/1.31 We consider the dependency pair problem (P_2, R_0, static, formative). 2.57/1.31 2.57/1.31 We apply the subterm criterion with the following projection function: 2.57/1.31 2.57/1.31 nu(filter2#) = 4 2.57/1.31 nu(filter#) = 2 2.57/1.31 2.57/1.31 Thus, we can orient the dependency pairs as follows: 2.57/1.31 2.57/1.31 nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) 2.57/1.31 nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 2.57/1.31 nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 2.57/1.31 2.57/1.31 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_2, R_0, static, f) by (P_3, R_0, static, f), where P_3 contains: 2.57/1.31 2.57/1.31 filter2#(true, F, X, Y) =#> filter#(F, Y) 2.57/1.31 filter2#(false, F, X, Y) =#> filter#(F, Y) 2.57/1.31 2.57/1.31 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_3, R_0, static, formative) is finite. 2.57/1.31 2.57/1.31 We consider the dependency pair problem (P_3, R_0, static, formative). 2.57/1.31 2.57/1.31 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 2.57/1.31 2.57/1.31 * 0 : 2.57/1.31 * 1 : 2.57/1.31 2.57/1.31 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 2.57/1.31 2.57/1.31 Thus, the original system is terminating if (P_1, R_0, static, formative) is finite. 2.57/1.31 2.57/1.31 We consider the dependency pair problem (P_1, R_0, static, formative). 2.57/1.31 2.57/1.31 We apply the subterm criterion with the following projection function: 2.57/1.31 2.57/1.31 nu(map#) = 2 2.57/1.31 2.57/1.31 Thus, we can orient the dependency pairs as follows: 2.57/1.31 2.57/1.31 nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) 2.57/1.31 2.57/1.31 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_1, R_0, static, f) by ({}, R_0, static, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. 2.57/1.31 2.57/1.31 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 2.57/1.31 2.57/1.31 2.57/1.31 +++ Citations +++ 2.57/1.31 2.57/1.31 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 2.57/1.31 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 2.57/1.31 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 2.57/1.31 EOF