3.37/2.02 YES 3.37/2.04 We consider the system theBenchmark. 3.37/2.04 3.37/2.04 Alphabet: 3.37/2.04 3.37/2.04 0 : [] --> b 3.37/2.04 app : [c * c] --> c 3.37/2.04 cons : [b * c] --> c 3.37/2.04 false : [] --> a 3.37/2.04 filter : [b -> a * c] --> c 3.37/2.04 filter2 : [a * b -> a * b * c] --> c 3.37/2.04 map : [b -> b * c] --> c 3.37/2.04 minus : [b * b] --> b 3.37/2.04 nil : [] --> c 3.37/2.04 plus : [b * b] --> b 3.37/2.04 quot : [b * b] --> b 3.37/2.04 s : [b] --> b 3.37/2.04 sum : [c] --> c 3.37/2.04 true : [] --> a 3.37/2.04 3.37/2.04 Rules: 3.37/2.04 3.37/2.04 minus(x, 0) => x 3.37/2.04 minus(s(x), s(y)) => minus(x, y) 3.37/2.04 minus(minus(x, y), z) => minus(x, plus(y, z)) 3.37/2.04 quot(0, s(x)) => 0 3.37/2.04 quot(s(x), s(y)) => s(quot(minus(x, y), s(y))) 3.37/2.04 plus(0, x) => x 3.37/2.04 plus(s(x), y) => s(plus(x, y)) 3.37/2.04 app(nil, x) => x 3.37/2.04 app(x, nil) => x 3.37/2.04 app(cons(x, y), z) => cons(x, app(y, z)) 3.37/2.04 sum(cons(x, nil)) => cons(x, nil) 3.37/2.04 sum(cons(x, cons(y, z))) => sum(cons(plus(x, y), z)) 3.37/2.04 sum(app(x, cons(y, cons(z, u)))) => sum(app(x, sum(cons(y, cons(z, u))))) 3.37/2.04 map(f, nil) => nil 3.37/2.04 map(f, cons(x, y)) => cons(f x, map(f, y)) 3.37/2.04 filter(f, nil) => nil 3.37/2.04 filter(f, cons(x, y)) => filter2(f x, f, x, y) 3.37/2.04 filter2(true, f, x, y) => cons(x, filter(f, y)) 3.37/2.04 filter2(false, f, x, y) => filter(f, y) 3.37/2.04 3.37/2.04 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 3.37/2.04 3.37/2.04 We observe that the rules contain a first-order subset: 3.37/2.04 3.37/2.04 minus(X, 0) => X 3.37/2.04 minus(s(X), s(Y)) => minus(X, Y) 3.37/2.04 minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) 3.37/2.04 quot(0, s(X)) => 0 3.37/2.04 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) 3.37/2.04 plus(0, X) => X 3.37/2.04 plus(s(X), Y) => s(plus(X, Y)) 3.37/2.04 app(nil, X) => X 3.37/2.04 app(X, nil) => X 3.37/2.04 app(cons(X, Y), Z) => cons(X, app(Y, Z)) 3.37/2.04 sum(cons(X, nil)) => cons(X, nil) 3.37/2.04 sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) 3.37/2.04 sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) 3.37/2.04 3.37/2.04 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. 3.37/2.04 3.37/2.04 According to the external first-order termination prover, this system is indeed Ce-terminating: 3.37/2.04 3.37/2.04 || proof of resources/system.trs 3.37/2.04 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || Termination w.r.t. Q of the given QTRS could be proven: 3.37/2.04 || 3.37/2.04 || (0) QTRS 3.37/2.04 || (1) DependencyPairsProof [EQUIVALENT] 3.37/2.04 || (2) QDP 3.37/2.04 || (3) DependencyGraphProof [EQUIVALENT] 3.37/2.04 || (4) AND 3.37/2.04 || (5) QDP 3.37/2.04 || (6) UsableRulesProof [EQUIVALENT] 3.37/2.04 || (7) QDP 3.37/2.04 || (8) QDPSizeChangeProof [EQUIVALENT] 3.37/2.04 || (9) YES 3.37/2.04 || (10) QDP 3.37/2.04 || (11) UsableRulesProof [EQUIVALENT] 3.37/2.04 || (12) QDP 3.37/2.04 || (13) QDPSizeChangeProof [EQUIVALENT] 3.37/2.04 || (14) YES 3.37/2.04 || (15) QDP 3.37/2.04 || (16) UsableRulesProof [EQUIVALENT] 3.37/2.04 || (17) QDP 3.37/2.04 || (18) MNOCProof [EQUIVALENT] 3.37/2.04 || (19) QDP 3.37/2.04 || (20) UsableRulesReductionPairsProof [EQUIVALENT] 3.37/2.04 || (21) QDP 3.37/2.04 || (22) PisEmptyProof [EQUIVALENT] 3.37/2.04 || (23) YES 3.37/2.04 || (24) QDP 3.37/2.04 || (25) UsableRulesProof [EQUIVALENT] 3.37/2.04 || (26) QDP 3.37/2.04 || (27) UsableRulesReductionPairsProof [EQUIVALENT] 3.37/2.04 || (28) QDP 3.37/2.04 || (29) MRRProof [EQUIVALENT] 3.37/2.04 || (30) QDP 3.37/2.04 || (31) DependencyGraphProof [EQUIVALENT] 3.37/2.04 || (32) TRUE 3.37/2.04 || (33) QDP 3.37/2.04 || (34) UsableRulesProof [EQUIVALENT] 3.37/2.04 || (35) QDP 3.37/2.04 || (36) MNOCProof [EQUIVALENT] 3.37/2.04 || (37) QDP 3.37/2.04 || (38) QDPSizeChangeProof [EQUIVALENT] 3.37/2.04 || (39) YES 3.37/2.04 || (40) QDP 3.37/2.04 || (41) QDPOrderProof [EQUIVALENT] 3.37/2.04 || (42) QDP 3.37/2.04 || (43) PisEmptyProof [EQUIVALENT] 3.37/2.04 || (44) YES 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (0) 3.37/2.04 || Obligation: 3.37/2.04 || Q restricted rewrite system: 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (1) DependencyPairsProof (EQUIVALENT) 3.37/2.04 || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (2) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) 3.37/2.04 || MINUS(minus(%X, %Y), %Z) -> PLUS(%Y, %Z) 3.37/2.04 || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) 3.37/2.04 || QUOT(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || PLUS(s(%X), %Y) -> PLUS(%X, %Y) 3.37/2.04 || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> PLUS(%X, %Y) 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> APP(%X, sum(cons(%Y, cons(%Z, %U)))) 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(cons(%Y, cons(%Z, %U))) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (3) DependencyGraphProof (EQUIVALENT) 3.37/2.04 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 5 less nodes. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (4) 3.37/2.04 || Complex Obligation (AND) 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (5) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (6) UsableRulesProof (EQUIVALENT) 3.37/2.04 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (7) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) 3.37/2.04 || 3.37/2.04 || R is empty. 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (8) QDPSizeChangeProof (EQUIVALENT) 3.37/2.04 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.37/2.04 || 3.37/2.04 || From the DPs we obtained the following set of size-change graphs: 3.37/2.04 || *APP(cons(%X, %Y), %Z) -> APP(%Y, %Z) 3.37/2.04 || The graph contains the following edges 1 > 1, 2 >= 2 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (9) 3.37/2.04 || YES 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (10) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || PLUS(s(%X), %Y) -> PLUS(%X, %Y) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (11) UsableRulesProof (EQUIVALENT) 3.37/2.04 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (12) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || PLUS(s(%X), %Y) -> PLUS(%X, %Y) 3.37/2.04 || 3.37/2.04 || R is empty. 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (13) QDPSizeChangeProof (EQUIVALENT) 3.37/2.04 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.37/2.04 || 3.37/2.04 || From the DPs we obtained the following set of size-change graphs: 3.37/2.04 || *PLUS(s(%X), %Y) -> PLUS(%X, %Y) 3.37/2.04 || The graph contains the following edges 1 > 1, 2 >= 2 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (14) 3.37/2.04 || YES 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (15) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (16) UsableRulesProof (EQUIVALENT) 3.37/2.04 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (17) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (18) MNOCProof (EQUIVALENT) 3.37/2.04 || We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (19) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || 3.37/2.04 || The set Q consists of the following terms: 3.37/2.04 || 3.37/2.04 || plus(0, x0) 3.37/2.04 || plus(s(x0), x1) 3.37/2.04 || 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (20) UsableRulesReductionPairsProof (EQUIVALENT) 3.37/2.04 || By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. 3.37/2.04 || 3.37/2.04 || The following dependency pairs can be deleted: 3.37/2.04 || 3.37/2.04 || SUM(cons(%X, cons(%Y, %Z))) -> SUM(cons(plus(%X, %Y), %Z)) 3.37/2.04 || The following rules are removed from R: 3.37/2.04 || 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || Used ordering: POLO with Polynomial interpretation [POLO]: 3.37/2.04 || 3.37/2.04 || POL(0) = 0 3.37/2.04 || POL(SUM(x_1)) = 2*x_1 3.37/2.04 || POL(cons(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 3.37/2.04 || POL(plus(x_1, x_2)) = x_1 + x_2 3.37/2.04 || POL(s(x_1)) = x_1 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (21) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || P is empty. 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || 3.37/2.04 || The set Q consists of the following terms: 3.37/2.04 || 3.37/2.04 || plus(0, x0) 3.37/2.04 || plus(s(x0), x1) 3.37/2.04 || 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (22) PisEmptyProof (EQUIVALENT) 3.37/2.04 || The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (23) 3.37/2.04 || YES 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (24) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (25) UsableRulesProof (EQUIVALENT) 3.37/2.04 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (26) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (27) UsableRulesReductionPairsProof (EQUIVALENT) 3.37/2.04 || By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. 3.37/2.04 || 3.37/2.04 || No dependency pairs are removed. 3.37/2.04 || 3.37/2.04 || The following rules are removed from R: 3.37/2.04 || 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || Used ordering: POLO with Polynomial interpretation [POLO]: 3.37/2.04 || 3.37/2.04 || POL(0) = 0 3.37/2.04 || POL(SUM(x_1)) = x_1 3.37/2.04 || POL(app(x_1, x_2)) = 2 + 2*x_1 + x_2 3.37/2.04 || POL(cons(x_1, x_2)) = 2*x_1 + x_2 3.37/2.04 || POL(nil) = 0 3.37/2.04 || POL(plus(x_1, x_2)) = x_1 + x_2 3.37/2.04 || POL(s(x_1)) = x_1 3.37/2.04 || POL(sum(x_1)) = x_1 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (28) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (29) MRRProof (EQUIVALENT) 3.37/2.04 || By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || Strictly oriented rules of the TRS R: 3.37/2.04 || 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || 3.37/2.04 || Used ordering: Polynomial interpretation [POLO]: 3.37/2.04 || 3.37/2.04 || POL(SUM(x_1)) = x_1 3.37/2.04 || POL(app(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 3.37/2.04 || POL(cons(x_1, x_2)) = 1 + x_1 + x_2 3.37/2.04 || POL(nil) = 0 3.37/2.04 || POL(plus(x_1, x_2)) = x_1 + x_2 3.37/2.04 || POL(s(x_1)) = x_1 3.37/2.04 || POL(sum(x_1)) = x_1 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (30) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || SUM(app(%X, cons(%Y, cons(%Z, %U)))) -> SUM(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (31) DependencyGraphProof (EQUIVALENT) 3.37/2.04 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (32) 3.37/2.04 || TRUE 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (33) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) 3.37/2.04 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (34) UsableRulesProof (EQUIVALENT) 3.37/2.04 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (35) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) 3.37/2.04 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (36) MNOCProof (EQUIVALENT) 3.37/2.04 || We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (37) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) 3.37/2.04 || MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || 3.37/2.04 || The set Q consists of the following terms: 3.37/2.04 || 3.37/2.04 || plus(0, x0) 3.37/2.04 || plus(s(x0), x1) 3.37/2.04 || 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (38) QDPSizeChangeProof (EQUIVALENT) 3.37/2.04 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.37/2.04 || 3.37/2.04 || From the DPs we obtained the following set of size-change graphs: 3.37/2.04 || *MINUS(minus(%X, %Y), %Z) -> MINUS(%X, plus(%Y, %Z)) 3.37/2.04 || The graph contains the following edges 1 > 1 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || *MINUS(s(%X), s(%Y)) -> MINUS(%X, %Y) 3.37/2.04 || The graph contains the following edges 1 > 1, 2 > 2 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (39) 3.37/2.04 || YES 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (40) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || The TRS P consists of the following rules: 3.37/2.04 || 3.37/2.04 || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) 3.37/2.04 || 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (41) QDPOrderProof (EQUIVALENT) 3.37/2.04 || We use the reduction pair processor [LPAR04,JAR06]. 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || The following pairs can be oriented strictly and are deleted. 3.37/2.04 || 3.37/2.04 || QUOT(s(%X), s(%Y)) -> QUOT(minus(%X, %Y), s(%Y)) 3.37/2.04 || The remaining pairs can at least be oriented weakly. 3.37/2.04 || Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 3.37/2.04 || 3.37/2.04 || POL( QUOT_2(x_1, x_2) ) = max{0, x_1 - 1} 3.37/2.04 || POL( minus_2(x_1, x_2) ) = 2x_1 3.37/2.04 || POL( 0 ) = 1 3.37/2.04 || POL( plus_2(x_1, x_2) ) = x_1 3.37/2.04 || POL( s_1(x_1) ) = 2x_1 + 2 3.37/2.04 || 3.37/2.04 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || 3.37/2.04 || 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (42) 3.37/2.04 || Obligation: 3.37/2.04 || Q DP problem: 3.37/2.04 || P is empty. 3.37/2.04 || The TRS R consists of the following rules: 3.37/2.04 || 3.37/2.04 || minus(%X, 0) -> %X 3.37/2.04 || minus(s(%X), s(%Y)) -> minus(%X, %Y) 3.37/2.04 || minus(minus(%X, %Y), %Z) -> minus(%X, plus(%Y, %Z)) 3.37/2.04 || quot(0, s(%X)) -> 0 3.37/2.04 || quot(s(%X), s(%Y)) -> s(quot(minus(%X, %Y), s(%Y))) 3.37/2.04 || plus(0, %X) -> %X 3.37/2.04 || plus(s(%X), %Y) -> s(plus(%X, %Y)) 3.37/2.04 || app(nil, %X) -> %X 3.37/2.04 || app(%X, nil) -> %X 3.37/2.04 || app(cons(%X, %Y), %Z) -> cons(%X, app(%Y, %Z)) 3.37/2.04 || sum(cons(%X, nil)) -> cons(%X, nil) 3.37/2.04 || sum(cons(%X, cons(%Y, %Z))) -> sum(cons(plus(%X, %Y), %Z)) 3.37/2.04 || sum(app(%X, cons(%Y, cons(%Z, %U)))) -> sum(app(%X, sum(cons(%Y, cons(%Z, %U))))) 3.37/2.04 || ~PAIR(%X, %Y) -> %X 3.37/2.04 || ~PAIR(%X, %Y) -> %Y 3.37/2.04 || 3.37/2.04 || Q is empty. 3.37/2.04 || We have to consider all minimal (P,Q,R)-chains. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (43) PisEmptyProof (EQUIVALENT) 3.37/2.04 || The TRS P is empty. Hence, there is no (P,Q,R) chain. 3.37/2.04 || ---------------------------------------- 3.37/2.04 || 3.37/2.04 || (44) 3.37/2.04 || YES 3.37/2.04 || 3.37/2.04 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 3.37/2.04 3.37/2.04 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 3.37/2.04 3.37/2.04 Dependency Pairs P_0: 3.37/2.04 3.37/2.04 0] map#(F, cons(X, Y)) =#> map#(F, Y) 3.37/2.04 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3.37/2.04 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 3.37/2.04 3] filter2#(false, F, X, Y) =#> filter#(F, Y) 3.37/2.04 3.37/2.04 Rules R_0: 3.37/2.04 3.37/2.04 minus(X, 0) => X 3.37/2.04 minus(s(X), s(Y)) => minus(X, Y) 3.37/2.04 minus(minus(X, Y), Z) => minus(X, plus(Y, Z)) 3.37/2.04 quot(0, s(X)) => 0 3.37/2.04 quot(s(X), s(Y)) => s(quot(minus(X, Y), s(Y))) 3.37/2.04 plus(0, X) => X 3.37/2.04 plus(s(X), Y) => s(plus(X, Y)) 3.37/2.04 app(nil, X) => X 3.37/2.04 app(X, nil) => X 3.37/2.04 app(cons(X, Y), Z) => cons(X, app(Y, Z)) 3.37/2.04 sum(cons(X, nil)) => cons(X, nil) 3.37/2.04 sum(cons(X, cons(Y, Z))) => sum(cons(plus(X, Y), Z)) 3.37/2.04 sum(app(X, cons(Y, cons(Z, U)))) => sum(app(X, sum(cons(Y, cons(Z, U))))) 3.37/2.04 map(F, nil) => nil 3.37/2.04 map(F, cons(X, Y)) => cons(F X, map(F, Y)) 3.37/2.04 filter(F, nil) => nil 3.37/2.04 filter(F, cons(X, Y)) => filter2(F X, F, X, Y) 3.37/2.04 filter2(true, F, X, Y) => cons(X, filter(F, Y)) 3.37/2.04 filter2(false, F, X, Y) => filter(F, Y) 3.37/2.04 3.37/2.04 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 3.37/2.04 3.37/2.04 We consider the dependency pair problem (P_0, R_0, static, formative). 3.37/2.04 3.37/2.04 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 3.37/2.04 3.37/2.04 * 0 : 0 3.37/2.04 * 1 : 2, 3 3.37/2.04 * 2 : 1 3.37/2.04 * 3 : 1 3.37/2.04 3.37/2.04 This graph has the following strongly connected components: 3.37/2.04 3.37/2.04 P_1: 3.37/2.04 3.37/2.04 map#(F, cons(X, Y)) =#> map#(F, Y) 3.37/2.04 3.37/2.04 P_2: 3.37/2.04 3.37/2.04 filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 3.37/2.04 filter2#(true, F, X, Y) =#> filter#(F, Y) 3.37/2.04 filter2#(false, F, X, Y) =#> filter#(F, Y) 3.37/2.04 3.37/2.04 By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). 3.37/2.04 3.37/2.04 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_2, R_0, static, formative) is finite. 3.37/2.04 3.37/2.04 We consider the dependency pair problem (P_2, R_0, static, formative). 3.37/2.04 3.37/2.04 We apply the subterm criterion with the following projection function: 3.37/2.04 3.37/2.04 nu(filter2#) = 4 3.37/2.04 nu(filter#) = 2 3.37/2.04 3.37/2.04 Thus, we can orient the dependency pairs as follows: 3.37/2.04 3.37/2.04 nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) 3.37/2.04 nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 3.37/2.04 nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 3.37/2.04 3.37/2.04 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_2, R_0, static, f) by (P_3, R_0, static, f), where P_3 contains: 3.37/2.04 3.37/2.04 filter2#(true, F, X, Y) =#> filter#(F, Y) 3.37/2.04 filter2#(false, F, X, Y) =#> filter#(F, Y) 3.37/2.04 3.37/2.04 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_3, R_0, static, formative) is finite. 3.37/2.04 3.37/2.04 We consider the dependency pair problem (P_3, R_0, static, formative). 3.37/2.04 3.37/2.04 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 3.37/2.04 3.37/2.04 * 0 : 3.37/2.04 * 1 : 3.37/2.04 3.37/2.04 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 3.37/2.04 3.37/2.04 Thus, the original system is terminating if (P_1, R_0, static, formative) is finite. 3.37/2.04 3.37/2.04 We consider the dependency pair problem (P_1, R_0, static, formative). 3.37/2.04 3.37/2.04 We apply the subterm criterion with the following projection function: 3.37/2.04 3.37/2.04 nu(map#) = 2 3.37/2.04 3.37/2.04 Thus, we can orient the dependency pairs as follows: 3.37/2.04 3.37/2.04 nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) 3.37/2.04 3.37/2.04 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_1, R_0, static, f) by ({}, R_0, static, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. 3.37/2.04 3.37/2.04 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 3.37/2.04 3.37/2.04 3.37/2.04 +++ Citations +++ 3.37/2.04 3.37/2.04 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 3.37/2.04 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 3.37/2.04 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 3.37/2.04 EOF