35.41/13.55 YES 35.41/13.56 We consider the system theBenchmark. 35.41/13.56 35.41/13.56 Alphabet: 35.41/13.56 35.41/13.56 !facplus : [a * a] --> a 35.41/13.56 !factimes : [a * a] --> a 35.41/13.56 cons : [c * d] --> d 35.41/13.56 false : [] --> b 35.41/13.56 filter : [c -> b * d] --> d 35.41/13.56 filter2 : [b * c -> b * c * d] --> d 35.41/13.56 map : [c -> c * d] --> d 35.41/13.56 nil : [] --> d 35.41/13.56 true : [] --> b 35.41/13.56 35.41/13.56 Rules: 35.41/13.56 35.41/13.56 !factimes(x, !facplus(y, z)) => !facplus(!factimes(x, y), !factimes(x, z)) 35.41/13.56 !factimes(!facplus(x, y), z) => !facplus(!factimes(z, x), !factimes(z, y)) 35.41/13.56 !factimes(!factimes(x, y), z) => !factimes(x, !factimes(y, z)) 35.41/13.56 !facplus(!facplus(x, y), z) => !facplus(x, !facplus(y, z)) 35.41/13.56 map(f, nil) => nil 35.41/13.56 map(f, cons(x, y)) => cons(f x, map(f, y)) 35.41/13.56 filter(f, nil) => nil 35.41/13.56 filter(f, cons(x, y)) => filter2(f x, f, x, y) 35.41/13.56 filter2(true, f, x, y) => cons(x, filter(f, y)) 35.41/13.56 filter2(false, f, x, y) => filter(f, y) 35.41/13.56 35.41/13.56 This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). 35.41/13.56 35.41/13.56 We observe that the rules contain a first-order subset: 35.41/13.56 35.41/13.56 !factimes(X, !facplus(Y, Z)) => !facplus(!factimes(X, Y), !factimes(X, Z)) 35.41/13.56 !factimes(!facplus(X, Y), Z) => !facplus(!factimes(Z, X), !factimes(Z, Y)) 35.41/13.56 !factimes(!factimes(X, Y), Z) => !factimes(X, !factimes(Y, Z)) 35.41/13.56 !facplus(!facplus(X, Y), Z) => !facplus(X, !facplus(Y, Z)) 35.41/13.56 35.41/13.56 Moreover, the system is finitely branching. Thus, by [Kop12, Thm. 7.55], we may omit all first-order dependency pairs from the dependency pair problem (DP(R), R) if this first-order part is Ce-terminating when seen as a many-sorted first-order TRS. 35.41/13.56 35.41/13.56 According to the external first-order termination prover, this system is indeed Ce-terminating: 35.41/13.56 35.41/13.56 || proof of resources/system.trs 35.41/13.56 || # AProVE Commit ID: d84c10301d352dfd14de2104819581f4682260f5 fuhs 20130616 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || Termination w.r.t. Q of the given QTRS could be proven: 35.41/13.56 || 35.41/13.56 || (0) QTRS 35.41/13.56 || (1) DependencyPairsProof [EQUIVALENT] 35.41/13.56 || (2) QDP 35.41/13.56 || (3) DependencyGraphProof [EQUIVALENT] 35.41/13.56 || (4) AND 35.41/13.56 || (5) QDP 35.41/13.56 || (6) UsableRulesProof [EQUIVALENT] 35.41/13.56 || (7) QDP 35.41/13.56 || (8) QDPSizeChangeProof [EQUIVALENT] 35.41/13.56 || (9) YES 35.41/13.56 || (10) QDP 35.41/13.56 || (11) QDPOrderProof [EQUIVALENT] 35.41/13.56 || (12) QDP 35.41/13.56 || (13) QDPSizeChangeProof [EQUIVALENT] 35.41/13.56 || (14) YES 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (0) 35.41/13.56 || Obligation: 35.41/13.56 || Q restricted rewrite system: 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || ~PAIR(%X, %Y) -> %X 35.41/13.56 || ~PAIR(%X, %Y) -> %Y 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (1) DependencyPairsProof (EQUIVALENT) 35.41/13.56 || Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (2) 35.41/13.56 || Obligation: 35.41/13.56 || Q DP problem: 35.41/13.56 || The TRS P consists of the following rules: 35.41/13.56 || 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACPLUS(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Y) 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Z) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACPLUS(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %X) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %Y) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%X, !factimes(%Y, %Z)) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%Y, %Z) 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%X, !facplus(%Y, %Z)) 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%Y, %Z) 35.41/13.56 || 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || ~PAIR(%X, %Y) -> %X 35.41/13.56 || ~PAIR(%X, %Y) -> %Y 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || We have to consider all minimal (P,Q,R)-chains. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (3) DependencyGraphProof (EQUIVALENT) 35.41/13.56 || The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (4) 35.41/13.56 || Complex Obligation (AND) 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (5) 35.41/13.56 || Obligation: 35.41/13.56 || Q DP problem: 35.41/13.56 || The TRS P consists of the following rules: 35.41/13.56 || 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%Y, %Z) 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%X, !facplus(%Y, %Z)) 35.41/13.56 || 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || ~PAIR(%X, %Y) -> %X 35.41/13.56 || ~PAIR(%X, %Y) -> %Y 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || We have to consider all minimal (P,Q,R)-chains. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (6) UsableRulesProof (EQUIVALENT) 35.41/13.56 || We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (7) 35.41/13.56 || Obligation: 35.41/13.56 || Q DP problem: 35.41/13.56 || The TRS P consists of the following rules: 35.41/13.56 || 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%Y, %Z) 35.41/13.56 || !FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%X, !facplus(%Y, %Z)) 35.41/13.56 || 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || We have to consider all minimal (P,Q,R)-chains. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (8) QDPSizeChangeProof (EQUIVALENT) 35.41/13.56 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 35.41/13.56 || 35.41/13.56 || From the DPs we obtained the following set of size-change graphs: 35.41/13.56 || *!FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%Y, %Z) 35.41/13.56 || The graph contains the following edges 1 > 1, 2 >= 2 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || *!FACPLUS(!facplus(%X, %Y), %Z) -> !FACPLUS(%X, !facplus(%Y, %Z)) 35.41/13.56 || The graph contains the following edges 1 > 1 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (9) 35.41/13.56 || YES 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (10) 35.41/13.56 || Obligation: 35.41/13.56 || Q DP problem: 35.41/13.56 || The TRS P consists of the following rules: 35.41/13.56 || 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Z) 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Y) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %X) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %Y) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%X, !factimes(%Y, %Z)) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%Y, %Z) 35.41/13.56 || 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || ~PAIR(%X, %Y) -> %X 35.41/13.56 || ~PAIR(%X, %Y) -> %Y 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || We have to consider all minimal (P,Q,R)-chains. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (11) QDPOrderProof (EQUIVALENT) 35.41/13.56 || We use the reduction pair processor [LPAR04,JAR06]. 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || The following pairs can be oriented strictly and are deleted. 35.41/13.56 || 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %X) 35.41/13.56 || !FACTIMES(!facplus(%X, %Y), %Z) -> !FACTIMES(%Z, %Y) 35.41/13.56 || The remaining pairs can at least be oriented weakly. 35.41/13.56 || Used ordering: Polynomial interpretation [POLO]: 35.41/13.56 || 35.41/13.56 || POL(!FACTIMES(x_1, x_2)) = x_1 + x_1*x_2 35.41/13.56 || POL(!facplus(x_1, x_2)) = 1 + x_1 + x_2 35.41/13.56 || POL(!factimes(x_1, x_2)) = x_1 + x_1*x_2 + x_2 35.41/13.56 || 35.41/13.56 || The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (12) 35.41/13.56 || Obligation: 35.41/13.56 || Q DP problem: 35.41/13.56 || The TRS P consists of the following rules: 35.41/13.56 || 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Z) 35.41/13.56 || !FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Y) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%X, !factimes(%Y, %Z)) 35.41/13.56 || !FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%Y, %Z) 35.41/13.56 || 35.41/13.56 || The TRS R consists of the following rules: 35.41/13.56 || 35.41/13.56 || !factimes(%X, !facplus(%Y, %Z)) -> !facplus(!factimes(%X, %Y), !factimes(%X, %Z)) 35.41/13.56 || !factimes(!facplus(%X, %Y), %Z) -> !facplus(!factimes(%Z, %X), !factimes(%Z, %Y)) 35.41/13.56 || !factimes(!factimes(%X, %Y), %Z) -> !factimes(%X, !factimes(%Y, %Z)) 35.41/13.56 || !facplus(!facplus(%X, %Y), %Z) -> !facplus(%X, !facplus(%Y, %Z)) 35.41/13.56 || ~PAIR(%X, %Y) -> %X 35.41/13.56 || ~PAIR(%X, %Y) -> %Y 35.41/13.56 || 35.41/13.56 || Q is empty. 35.41/13.56 || We have to consider all minimal (P,Q,R)-chains. 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (13) QDPSizeChangeProof (EQUIVALENT) 35.41/13.56 || By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 35.41/13.56 || 35.41/13.56 || From the DPs we obtained the following set of size-change graphs: 35.41/13.56 || *!FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Z) 35.41/13.56 || The graph contains the following edges 1 >= 1, 2 > 2 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || *!FACTIMES(%X, !facplus(%Y, %Z)) -> !FACTIMES(%X, %Y) 35.41/13.56 || The graph contains the following edges 1 >= 1, 2 > 2 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || *!FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%X, !factimes(%Y, %Z)) 35.41/13.56 || The graph contains the following edges 1 > 1 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || *!FACTIMES(!factimes(%X, %Y), %Z) -> !FACTIMES(%Y, %Z) 35.41/13.56 || The graph contains the following edges 1 > 1, 2 >= 2 35.41/13.56 || 35.41/13.56 || 35.41/13.56 || ---------------------------------------- 35.41/13.56 || 35.41/13.56 || (14) 35.41/13.56 || YES 35.41/13.56 || 35.41/13.56 We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs and accessible arguments in [Kop13]). 35.41/13.56 35.41/13.56 We thus obtain the following dependency pair problem (P_0, R_0, static, formative): 35.41/13.56 35.41/13.56 Dependency Pairs P_0: 35.41/13.56 35.41/13.56 0] map#(F, cons(X, Y)) =#> map#(F, Y) 35.41/13.56 1] filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 35.41/13.56 2] filter2#(true, F, X, Y) =#> filter#(F, Y) 35.41/13.56 3] filter2#(false, F, X, Y) =#> filter#(F, Y) 35.41/13.56 35.41/13.56 Rules R_0: 35.41/13.56 35.41/13.56 !factimes(X, !facplus(Y, Z)) => !facplus(!factimes(X, Y), !factimes(X, Z)) 35.41/13.56 !factimes(!facplus(X, Y), Z) => !facplus(!factimes(Z, X), !factimes(Z, Y)) 35.41/13.56 !factimes(!factimes(X, Y), Z) => !factimes(X, !factimes(Y, Z)) 35.41/13.56 !facplus(!facplus(X, Y), Z) => !facplus(X, !facplus(Y, Z)) 35.41/13.56 map(F, nil) => nil 35.41/13.56 map(F, cons(X, Y)) => cons(F X, map(F, Y)) 35.41/13.56 filter(F, nil) => nil 35.41/13.56 filter(F, cons(X, Y)) => filter2(F X, F, X, Y) 35.41/13.56 filter2(true, F, X, Y) => cons(X, filter(F, Y)) 35.41/13.56 filter2(false, F, X, Y) => filter(F, Y) 35.41/13.56 35.41/13.56 Thus, the original system is terminating if (P_0, R_0, static, formative) is finite. 35.41/13.56 35.41/13.56 We consider the dependency pair problem (P_0, R_0, static, formative). 35.41/13.56 35.41/13.56 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 35.41/13.56 35.41/13.56 * 0 : 0 35.41/13.56 * 1 : 2, 3 35.41/13.56 * 2 : 1 35.41/13.56 * 3 : 1 35.41/13.56 35.41/13.56 This graph has the following strongly connected components: 35.41/13.56 35.41/13.56 P_1: 35.41/13.56 35.41/13.56 map#(F, cons(X, Y)) =#> map#(F, Y) 35.41/13.56 35.41/13.56 P_2: 35.41/13.56 35.41/13.56 filter#(F, cons(X, Y)) =#> filter2#(F X, F, X, Y) 35.41/13.56 filter2#(true, F, X, Y) =#> filter#(F, Y) 35.41/13.56 filter2#(false, F, X, Y) =#> filter#(F, Y) 35.41/13.56 35.41/13.56 By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f) and (P_2, R_0, m, f). 35.41/13.56 35.41/13.56 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_2, R_0, static, formative) is finite. 35.41/13.56 35.41/13.56 We consider the dependency pair problem (P_2, R_0, static, formative). 35.41/13.56 35.41/13.56 We apply the subterm criterion with the following projection function: 35.41/13.56 35.41/13.56 nu(filter2#) = 4 35.41/13.56 nu(filter#) = 2 35.41/13.56 35.41/13.56 Thus, we can orient the dependency pairs as follows: 35.41/13.56 35.41/13.56 nu(filter#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(filter2#(F X, F, X, Y)) 35.41/13.56 nu(filter2#(true, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 35.41/13.56 nu(filter2#(false, F, X, Y)) = Y = Y = nu(filter#(F, Y)) 35.41/13.56 35.41/13.56 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_2, R_0, static, f) by (P_3, R_0, static, f), where P_3 contains: 35.41/13.56 35.41/13.56 filter2#(true, F, X, Y) =#> filter#(F, Y) 35.41/13.56 filter2#(false, F, X, Y) =#> filter#(F, Y) 35.41/13.56 35.41/13.56 Thus, the original system is terminating if each of (P_1, R_0, static, formative) and (P_3, R_0, static, formative) is finite. 35.41/13.56 35.41/13.56 We consider the dependency pair problem (P_3, R_0, static, formative). 35.41/13.56 35.41/13.56 We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: 35.41/13.56 35.41/13.56 * 0 : 35.41/13.56 * 1 : 35.41/13.56 35.41/13.56 This graph has no strongly connected components. By [Kop12, Thm. 7.31], this implies finiteness of the dependency pair problem. 35.41/13.56 35.41/13.56 Thus, the original system is terminating if (P_1, R_0, static, formative) is finite. 35.41/13.56 35.41/13.56 We consider the dependency pair problem (P_1, R_0, static, formative). 35.41/13.56 35.41/13.56 We apply the subterm criterion with the following projection function: 35.41/13.56 35.41/13.56 nu(map#) = 2 35.41/13.56 35.41/13.56 Thus, we can orient the dependency pairs as follows: 35.41/13.56 35.41/13.56 nu(map#(F, cons(X, Y))) = cons(X, Y) |> Y = nu(map#(F, Y)) 35.41/13.56 35.41/13.56 By [Kop12, Thm. 7.35] and [Kop13, Thm. 5], we may replace a dependency pair problem (P_1, R_0, static, f) by ({}, R_0, static, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. 35.41/13.56 35.41/13.56 As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. 35.41/13.56 35.41/13.56 35.41/13.56 +++ Citations +++ 35.41/13.56 35.41/13.56 [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. 35.41/13.56 [Kop13] C. Kop. Static Dependency Pairs with Accessibility. Unpublished manuscript, http://cl-informatik.uibk.ac.at/users/kop/static.pdf, 2013. 35.41/13.56 [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009. 35.41/13.56 EOF