3.94/1.85 YES 3.94/1.87 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.94/1.87 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.94/1.87 3.94/1.87 3.94/1.87 Termination w.r.t. Q of the given QTRS could be proven: 3.94/1.87 3.94/1.87 (0) QTRS 3.94/1.87 (1) QTRSToCSRProof [SOUND, 0 ms] 3.94/1.87 (2) CSR 3.94/1.87 (3) CSRInnermostProof [EQUIVALENT, 6 ms] 3.94/1.87 (4) CSR 3.94/1.87 (5) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.94/1.87 (6) QCSDP 3.94/1.87 (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.94/1.87 (8) QCSDP 3.94/1.87 (9) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.94/1.87 (10) QCSDP 3.94/1.87 (11) PIsEmptyProof [EQUIVALENT, 0 ms] 3.94/1.87 (12) YES 3.94/1.87 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (0) 3.94/1.87 Obligation: 3.94/1.87 Q restricted rewrite system: 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 active(primes) -> mark(sieve(from(s(s(0))))) 3.94/1.87 active(from(X)) -> mark(cons(X, from(s(X)))) 3.94/1.87 active(head(cons(X, Y))) -> mark(X) 3.94/1.87 active(tail(cons(X, Y))) -> mark(Y) 3.94/1.87 active(if(true, X, Y)) -> mark(X) 3.94/1.87 active(if(false, X, Y)) -> mark(Y) 3.94/1.87 active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) 3.94/1.87 active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) 3.94/1.87 active(sieve(X)) -> sieve(active(X)) 3.94/1.87 active(from(X)) -> from(active(X)) 3.94/1.87 active(s(X)) -> s(active(X)) 3.94/1.87 active(cons(X1, X2)) -> cons(active(X1), X2) 3.94/1.87 active(head(X)) -> head(active(X)) 3.94/1.87 active(tail(X)) -> tail(active(X)) 3.94/1.87 active(if(X1, X2, X3)) -> if(active(X1), X2, X3) 3.94/1.87 active(filter(X1, X2)) -> filter(active(X1), X2) 3.94/1.87 active(filter(X1, X2)) -> filter(X1, active(X2)) 3.94/1.87 active(divides(X1, X2)) -> divides(active(X1), X2) 3.94/1.87 active(divides(X1, X2)) -> divides(X1, active(X2)) 3.94/1.87 sieve(mark(X)) -> mark(sieve(X)) 3.94/1.87 from(mark(X)) -> mark(from(X)) 3.94/1.87 s(mark(X)) -> mark(s(X)) 3.94/1.87 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.94/1.87 head(mark(X)) -> mark(head(X)) 3.94/1.87 tail(mark(X)) -> mark(tail(X)) 3.94/1.87 if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) 3.94/1.87 filter(mark(X1), X2) -> mark(filter(X1, X2)) 3.94/1.87 filter(X1, mark(X2)) -> mark(filter(X1, X2)) 3.94/1.87 divides(mark(X1), X2) -> mark(divides(X1, X2)) 3.94/1.87 divides(X1, mark(X2)) -> mark(divides(X1, X2)) 3.94/1.87 proper(primes) -> ok(primes) 3.94/1.87 proper(sieve(X)) -> sieve(proper(X)) 3.94/1.87 proper(from(X)) -> from(proper(X)) 3.94/1.87 proper(s(X)) -> s(proper(X)) 3.94/1.87 proper(0) -> ok(0) 3.94/1.87 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.94/1.87 proper(head(X)) -> head(proper(X)) 3.94/1.87 proper(tail(X)) -> tail(proper(X)) 3.94/1.87 proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) 3.94/1.87 proper(true) -> ok(true) 3.94/1.87 proper(false) -> ok(false) 3.94/1.87 proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) 3.94/1.87 proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) 3.94/1.87 sieve(ok(X)) -> ok(sieve(X)) 3.94/1.87 from(ok(X)) -> ok(from(X)) 3.94/1.87 s(ok(X)) -> ok(s(X)) 3.94/1.87 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.94/1.87 head(ok(X)) -> ok(head(X)) 3.94/1.87 tail(ok(X)) -> ok(tail(X)) 3.94/1.87 if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) 3.94/1.87 filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) 3.94/1.87 divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) 3.94/1.87 top(mark(X)) -> top(proper(X)) 3.94/1.87 top(ok(X)) -> top(active(X)) 3.94/1.87 3.94/1.87 The set Q consists of the following terms: 3.94/1.87 3.94/1.87 active(primes) 3.94/1.87 active(from(x0)) 3.94/1.87 active(sieve(x0)) 3.94/1.87 active(s(x0)) 3.94/1.87 active(cons(x0, x1)) 3.94/1.87 active(head(x0)) 3.94/1.87 active(tail(x0)) 3.94/1.87 active(if(x0, x1, x2)) 3.94/1.87 active(filter(x0, x1)) 3.94/1.87 active(divides(x0, x1)) 3.94/1.87 sieve(mark(x0)) 3.94/1.87 from(mark(x0)) 3.94/1.87 s(mark(x0)) 3.94/1.87 cons(mark(x0), x1) 3.94/1.87 head(mark(x0)) 3.94/1.87 tail(mark(x0)) 3.94/1.87 if(mark(x0), x1, x2) 3.94/1.87 filter(mark(x0), x1) 3.94/1.87 filter(x0, mark(x1)) 3.94/1.87 divides(mark(x0), x1) 3.94/1.87 divides(x0, mark(x1)) 3.94/1.87 proper(primes) 3.94/1.87 proper(sieve(x0)) 3.94/1.87 proper(from(x0)) 3.94/1.87 proper(s(x0)) 3.94/1.87 proper(0) 3.94/1.87 proper(cons(x0, x1)) 3.94/1.87 proper(head(x0)) 3.94/1.87 proper(tail(x0)) 3.94/1.87 proper(if(x0, x1, x2)) 3.94/1.87 proper(true) 3.94/1.87 proper(false) 3.94/1.87 proper(filter(x0, x1)) 3.94/1.87 proper(divides(x0, x1)) 3.94/1.87 sieve(ok(x0)) 3.94/1.87 from(ok(x0)) 3.94/1.87 s(ok(x0)) 3.94/1.87 cons(ok(x0), ok(x1)) 3.94/1.87 head(ok(x0)) 3.94/1.87 tail(ok(x0)) 3.94/1.87 if(ok(x0), ok(x1), ok(x2)) 3.94/1.87 filter(ok(x0), ok(x1)) 3.94/1.87 divides(ok(x0), ok(x1)) 3.94/1.87 top(mark(x0)) 3.94/1.87 top(ok(x0)) 3.94/1.87 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (1) QTRSToCSRProof (SOUND) 3.94/1.87 The following Q TRS is given: Q restricted rewrite system: 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 active(primes) -> mark(sieve(from(s(s(0))))) 3.94/1.87 active(from(X)) -> mark(cons(X, from(s(X)))) 3.94/1.87 active(head(cons(X, Y))) -> mark(X) 3.94/1.87 active(tail(cons(X, Y))) -> mark(Y) 3.94/1.87 active(if(true, X, Y)) -> mark(X) 3.94/1.87 active(if(false, X, Y)) -> mark(Y) 3.94/1.87 active(filter(s(s(X)), cons(Y, Z))) -> mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))) 3.94/1.87 active(sieve(cons(X, Y))) -> mark(cons(X, filter(X, sieve(Y)))) 3.94/1.87 active(sieve(X)) -> sieve(active(X)) 3.94/1.87 active(from(X)) -> from(active(X)) 3.94/1.87 active(s(X)) -> s(active(X)) 3.94/1.87 active(cons(X1, X2)) -> cons(active(X1), X2) 3.94/1.87 active(head(X)) -> head(active(X)) 3.94/1.87 active(tail(X)) -> tail(active(X)) 3.94/1.87 active(if(X1, X2, X3)) -> if(active(X1), X2, X3) 3.94/1.87 active(filter(X1, X2)) -> filter(active(X1), X2) 3.94/1.87 active(filter(X1, X2)) -> filter(X1, active(X2)) 3.94/1.87 active(divides(X1, X2)) -> divides(active(X1), X2) 3.94/1.87 active(divides(X1, X2)) -> divides(X1, active(X2)) 3.94/1.87 sieve(mark(X)) -> mark(sieve(X)) 3.94/1.87 from(mark(X)) -> mark(from(X)) 3.94/1.87 s(mark(X)) -> mark(s(X)) 3.94/1.87 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.94/1.87 head(mark(X)) -> mark(head(X)) 3.94/1.87 tail(mark(X)) -> mark(tail(X)) 3.94/1.87 if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) 3.94/1.87 filter(mark(X1), X2) -> mark(filter(X1, X2)) 3.94/1.87 filter(X1, mark(X2)) -> mark(filter(X1, X2)) 3.94/1.87 divides(mark(X1), X2) -> mark(divides(X1, X2)) 3.94/1.87 divides(X1, mark(X2)) -> mark(divides(X1, X2)) 3.94/1.87 proper(primes) -> ok(primes) 3.94/1.87 proper(sieve(X)) -> sieve(proper(X)) 3.94/1.87 proper(from(X)) -> from(proper(X)) 3.94/1.87 proper(s(X)) -> s(proper(X)) 3.94/1.87 proper(0) -> ok(0) 3.94/1.87 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.94/1.87 proper(head(X)) -> head(proper(X)) 3.94/1.87 proper(tail(X)) -> tail(proper(X)) 3.94/1.87 proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) 3.94/1.87 proper(true) -> ok(true) 3.94/1.87 proper(false) -> ok(false) 3.94/1.87 proper(filter(X1, X2)) -> filter(proper(X1), proper(X2)) 3.94/1.87 proper(divides(X1, X2)) -> divides(proper(X1), proper(X2)) 3.94/1.87 sieve(ok(X)) -> ok(sieve(X)) 3.94/1.87 from(ok(X)) -> ok(from(X)) 3.94/1.87 s(ok(X)) -> ok(s(X)) 3.94/1.87 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.94/1.87 head(ok(X)) -> ok(head(X)) 3.94/1.87 tail(ok(X)) -> ok(tail(X)) 3.94/1.87 if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) 3.94/1.87 filter(ok(X1), ok(X2)) -> ok(filter(X1, X2)) 3.94/1.87 divides(ok(X1), ok(X2)) -> ok(divides(X1, X2)) 3.94/1.87 top(mark(X)) -> top(proper(X)) 3.94/1.87 top(ok(X)) -> top(active(X)) 3.94/1.87 3.94/1.87 The set Q consists of the following terms: 3.94/1.87 3.94/1.87 active(primes) 3.94/1.87 active(from(x0)) 3.94/1.87 active(sieve(x0)) 3.94/1.87 active(s(x0)) 3.94/1.87 active(cons(x0, x1)) 3.94/1.87 active(head(x0)) 3.94/1.87 active(tail(x0)) 3.94/1.87 active(if(x0, x1, x2)) 3.94/1.87 active(filter(x0, x1)) 3.94/1.87 active(divides(x0, x1)) 3.94/1.87 sieve(mark(x0)) 3.94/1.87 from(mark(x0)) 3.94/1.87 s(mark(x0)) 3.94/1.87 cons(mark(x0), x1) 3.94/1.87 head(mark(x0)) 3.94/1.87 tail(mark(x0)) 3.94/1.87 if(mark(x0), x1, x2) 3.94/1.87 filter(mark(x0), x1) 3.94/1.87 filter(x0, mark(x1)) 3.94/1.87 divides(mark(x0), x1) 3.94/1.87 divides(x0, mark(x1)) 3.94/1.87 proper(primes) 3.94/1.87 proper(sieve(x0)) 3.94/1.87 proper(from(x0)) 3.94/1.87 proper(s(x0)) 3.94/1.87 proper(0) 3.94/1.87 proper(cons(x0, x1)) 3.94/1.87 proper(head(x0)) 3.94/1.87 proper(tail(x0)) 3.94/1.87 proper(if(x0, x1, x2)) 3.94/1.87 proper(true) 3.94/1.87 proper(false) 3.94/1.87 proper(filter(x0, x1)) 3.94/1.87 proper(divides(x0, x1)) 3.94/1.87 sieve(ok(x0)) 3.94/1.87 from(ok(x0)) 3.94/1.87 s(ok(x0)) 3.94/1.87 cons(ok(x0), ok(x1)) 3.94/1.87 head(ok(x0)) 3.94/1.87 tail(ok(x0)) 3.94/1.87 if(ok(x0), ok(x1), ok(x2)) 3.94/1.87 filter(ok(x0), ok(x1)) 3.94/1.87 divides(ok(x0), ok(x1)) 3.94/1.87 top(mark(x0)) 3.94/1.87 top(ok(x0)) 3.94/1.87 3.94/1.87 Special symbols used for the transformation (see [GM04]): 3.94/1.87 top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 3.94/1.87 The replacement map contains the following entries: 3.94/1.87 3.94/1.87 primes: empty set 3.94/1.87 sieve: {1} 3.94/1.87 from: {1} 3.94/1.87 s: {1} 3.94/1.87 0: empty set 3.94/1.87 cons: {1} 3.94/1.87 head: {1} 3.94/1.87 tail: {1} 3.94/1.87 if: {1} 3.94/1.87 true: empty set 3.94/1.87 false: empty set 3.94/1.87 filter: {1, 2} 3.94/1.87 divides: {1, 2} 3.94/1.87 The QTRS contained just a subset of rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is sound, but not necessarily complete. 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (2) 3.94/1.87 Obligation: 3.94/1.87 Context-sensitive rewrite system: 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 primes -> sieve(from(s(s(0)))) 3.94/1.87 from(X) -> cons(X, from(s(X))) 3.94/1.87 head(cons(X, Y)) -> X 3.94/1.87 tail(cons(X, Y)) -> Y 3.94/1.87 if(true, X, Y) -> X 3.94/1.87 if(false, X, Y) -> Y 3.94/1.87 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.94/1.87 3.94/1.87 The replacement map contains the following entries: 3.94/1.87 3.94/1.87 primes: empty set 3.94/1.87 sieve: {1} 3.94/1.87 from: {1} 3.94/1.87 s: {1} 3.94/1.87 0: empty set 3.94/1.87 cons: {1} 3.94/1.87 head: {1} 3.94/1.87 tail: {1} 3.94/1.87 if: {1} 3.94/1.87 true: empty set 3.94/1.87 false: empty set 3.94/1.87 filter: {1, 2} 3.94/1.87 divides: {1, 2} 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (3) CSRInnermostProof (EQUIVALENT) 3.94/1.87 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (4) 3.94/1.87 Obligation: 3.94/1.87 Context-sensitive rewrite system: 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 primes -> sieve(from(s(s(0)))) 3.94/1.87 from(X) -> cons(X, from(s(X))) 3.94/1.87 head(cons(X, Y)) -> X 3.94/1.87 tail(cons(X, Y)) -> Y 3.94/1.87 if(true, X, Y) -> X 3.94/1.87 if(false, X, Y) -> Y 3.94/1.87 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.94/1.87 3.94/1.87 The replacement map contains the following entries: 3.94/1.87 3.94/1.87 primes: empty set 3.94/1.87 sieve: {1} 3.94/1.87 from: {1} 3.94/1.87 s: {1} 3.94/1.87 0: empty set 3.94/1.87 cons: {1} 3.94/1.87 head: {1} 3.94/1.87 tail: {1} 3.94/1.87 if: {1} 3.94/1.87 true: empty set 3.94/1.87 false: empty set 3.94/1.87 filter: {1, 2} 3.94/1.87 divides: {1, 2} 3.94/1.87 3.94/1.87 3.94/1.87 Innermost Strategy. 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (5) CSDependencyPairsProof (EQUIVALENT) 3.94/1.87 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (6) 3.94/1.87 Obligation: 3.94/1.87 Q-restricted context-sensitive dependency pair problem: 3.94/1.87 The symbols in {sieve_1, from_1, s_1, head_1, tail_1, filter_2, divides_2, SIEVE_1, FROM_1, FILTER_2, TAIL_1} are replacing on all positions. 3.94/1.87 For all symbols f in {cons_2, if_3, IF_3} we have mu(f) = {1}. 3.94/1.87 The symbols in {U_1} are not replacing on any position. 3.94/1.87 3.94/1.87 The ordinary context-sensitive dependency pairs DP_o are: 3.94/1.87 PRIMES -> SIEVE(from(s(s(0)))) 3.94/1.87 PRIMES -> FROM(s(s(0))) 3.94/1.87 FILTER(s(s(X)), cons(Y, Z)) -> IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 3.94/1.87 The collapsing dependency pairs are DP_c: 3.94/1.87 TAIL(cons(X, Y)) -> Y 3.94/1.87 IF(true, X, Y) -> X 3.94/1.87 IF(false, X, Y) -> Y 3.94/1.87 3.94/1.87 3.94/1.87 The hidden terms of R are: 3.94/1.87 3.94/1.87 from(s(x0)) 3.94/1.87 filter(s(s(x0)), x1) 3.94/1.87 filter(x0, sieve(x1)) 3.94/1.87 sieve(x0) 3.94/1.87 3.94/1.87 Every hiding context is built from: 3.94/1.87 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@11a21453 3.94/1.87 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@4d3bd416 3.94/1.87 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@705ddca4 3.94/1.87 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@cabbda4 3.94/1.87 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@d2a20ee 3.94/1.87 3.94/1.87 Hence, the new unhiding pairs DP_u are : 3.94/1.87 TAIL(cons(X, Y)) -> U(Y) 3.94/1.87 IF(true, X, Y) -> U(X) 3.94/1.87 IF(false, X, Y) -> U(Y) 3.94/1.87 U(s(x_0)) -> U(x_0) 3.94/1.87 U(from(x_0)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_1) 3.94/1.87 U(sieve(x_0)) -> U(x_0) 3.94/1.87 U(cons(x_0, x_1)) -> U(x_0) 3.94/1.87 U(from(s(x0))) -> FROM(s(x0)) 3.94/1.87 U(filter(s(s(x0)), x1)) -> FILTER(s(s(x0)), x1) 3.94/1.87 U(filter(x0, sieve(x1))) -> FILTER(x0, sieve(x1)) 3.94/1.87 U(sieve(x0)) -> SIEVE(x0) 3.94/1.87 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 primes -> sieve(from(s(s(0)))) 3.94/1.87 from(X) -> cons(X, from(s(X))) 3.94/1.87 head(cons(X, Y)) -> X 3.94/1.87 tail(cons(X, Y)) -> Y 3.94/1.87 if(true, X, Y) -> X 3.94/1.87 if(false, X, Y) -> Y 3.94/1.87 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.94/1.87 3.94/1.87 The set Q consists of the following terms: 3.94/1.87 3.94/1.87 primes 3.94/1.87 from(x0) 3.94/1.87 head(cons(x0, x1)) 3.94/1.87 tail(cons(x0, x1)) 3.94/1.87 if(true, x0, x1) 3.94/1.87 if(false, x0, x1) 3.94/1.87 filter(s(s(x0)), cons(x1, x2)) 3.94/1.87 sieve(cons(x0, x1)) 3.94/1.87 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (7) QCSDependencyGraphProof (EQUIVALENT) 3.94/1.87 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 1 SCC with 8 less nodes. 3.94/1.87 The rules FILTER(s(s(z0)), cons(z1, z2)) -> IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) and IF(true, x0, x1) -> U(x0) form no chain, because ECap^mu(IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1))))) = IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) does not unify with IF(true, x0, x1). The rules FILTER(s(s(z0)), cons(z1, z2)) -> IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) and IF(false, x0, x1) -> U(x1) form no chain, because ECap^mu(IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1))))) = IF(divides(s(s(z0)), z1), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) does not unify with IF(false, x0, x1). 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (8) 3.94/1.87 Obligation: 3.94/1.87 Q-restricted context-sensitive dependency pair problem: 3.94/1.87 The symbols in {sieve_1, from_1, s_1, head_1, tail_1, filter_2, divides_2} are replacing on all positions. 3.94/1.87 For all symbols f in {cons_2, if_3} we have mu(f) = {1}. 3.94/1.87 The symbols in {U_1} are not replacing on any position. 3.94/1.87 3.94/1.87 The TRS P consists of the following rules: 3.94/1.87 3.94/1.87 U(s(x_0)) -> U(x_0) 3.94/1.87 U(from(x_0)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_1) 3.94/1.87 U(sieve(x_0)) -> U(x_0) 3.94/1.87 U(cons(x_0, x_1)) -> U(x_0) 3.94/1.87 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 primes -> sieve(from(s(s(0)))) 3.94/1.87 from(X) -> cons(X, from(s(X))) 3.94/1.87 head(cons(X, Y)) -> X 3.94/1.87 tail(cons(X, Y)) -> Y 3.94/1.87 if(true, X, Y) -> X 3.94/1.87 if(false, X, Y) -> Y 3.94/1.87 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.94/1.87 3.94/1.87 The set Q consists of the following terms: 3.94/1.87 3.94/1.87 primes 3.94/1.87 from(x0) 3.94/1.87 head(cons(x0, x1)) 3.94/1.87 tail(cons(x0, x1)) 3.94/1.87 if(true, x0, x1) 3.94/1.87 if(false, x0, x1) 3.94/1.87 filter(s(s(x0)), cons(x1, x2)) 3.94/1.87 sieve(cons(x0, x1)) 3.94/1.87 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (9) QCSDPSubtermProof (EQUIVALENT) 3.94/1.87 We use the subterm processor [DA_EMMES]. 3.94/1.87 3.94/1.87 3.94/1.87 The following pairs can be oriented strictly and are deleted. 3.94/1.87 3.94/1.87 U(s(x_0)) -> U(x_0) 3.94/1.87 U(from(x_0)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_0) 3.94/1.87 U(filter(x_0, x_1)) -> U(x_1) 3.94/1.87 U(sieve(x_0)) -> U(x_0) 3.94/1.87 U(cons(x_0, x_1)) -> U(x_0) 3.94/1.87 The remaining pairs can at least be oriented weakly. 3.94/1.87 none 3.94/1.87 Used ordering: Combined order from the following AFS and order. 3.94/1.87 U(x1) = x1 3.94/1.87 3.94/1.87 3.94/1.87 Subterm Order 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (10) 3.94/1.87 Obligation: 3.94/1.87 Q-restricted context-sensitive dependency pair problem: 3.94/1.87 The symbols in {sieve_1, from_1, s_1, head_1, tail_1, filter_2, divides_2} are replacing on all positions. 3.94/1.87 For all symbols f in {cons_2, if_3} we have mu(f) = {1}. 3.94/1.87 3.94/1.87 The TRS P consists of the following rules: 3.94/1.87 none 3.94/1.87 3.94/1.87 The TRS R consists of the following rules: 3.94/1.87 3.94/1.87 primes -> sieve(from(s(s(0)))) 3.94/1.87 from(X) -> cons(X, from(s(X))) 3.94/1.87 head(cons(X, Y)) -> X 3.94/1.87 tail(cons(X, Y)) -> Y 3.94/1.87 if(true, X, Y) -> X 3.94/1.87 if(false, X, Y) -> Y 3.94/1.87 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.94/1.87 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.94/1.87 3.94/1.87 The set Q consists of the following terms: 3.94/1.87 3.94/1.87 primes 3.94/1.87 from(x0) 3.94/1.87 head(cons(x0, x1)) 3.94/1.87 tail(cons(x0, x1)) 3.94/1.87 if(true, x0, x1) 3.94/1.87 if(false, x0, x1) 3.94/1.87 filter(s(s(x0)), cons(x1, x2)) 3.94/1.87 sieve(cons(x0, x1)) 3.94/1.87 3.94/1.87 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (11) PIsEmptyProof (EQUIVALENT) 3.94/1.87 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.94/1.87 ---------------------------------------- 3.94/1.87 3.94/1.87 (12) 3.94/1.87 YES 4.23/1.89 EOF