3.50/1.80 YES 3.68/1.81 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.68/1.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.68/1.81 3.68/1.81 3.68/1.81 Termination w.r.t. Q of the given QTRS could be proven: 3.68/1.81 3.68/1.81 (0) QTRS 3.68/1.81 (1) QTRSToCSRProof [SOUND, 0 ms] 3.68/1.81 (2) CSR 3.68/1.81 (3) CSRInnermostProof [EQUIVALENT, 0 ms] 3.68/1.81 (4) CSR 3.68/1.81 (5) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.68/1.81 (6) QCSDP 3.68/1.81 (7) QCSDependencyGraphProof [EQUIVALENT, 1 ms] 3.68/1.81 (8) AND 3.68/1.81 (9) QCSDP 3.68/1.81 (10) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.68/1.81 (11) QCSDP 3.68/1.81 (12) PIsEmptyProof [EQUIVALENT, 0 ms] 3.68/1.81 (13) YES 3.68/1.81 (14) QCSDP 3.68/1.81 (15) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.68/1.81 (16) QCSDP 3.68/1.81 (17) PIsEmptyProof [EQUIVALENT, 0 ms] 3.68/1.81 (18) YES 3.68/1.81 (19) QCSDP 3.68/1.81 (20) QCSDPSubtermProof [EQUIVALENT, 0 ms] 3.68/1.81 (21) QCSDP 3.68/1.81 (22) PIsEmptyProof [EQUIVALENT, 0 ms] 3.68/1.81 (23) YES 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (0) 3.68/1.81 Obligation: 3.68/1.81 Q restricted rewrite system: 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) 3.68/1.81 active(sqr(0)) -> mark(0) 3.68/1.81 active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) 3.68/1.81 active(dbl(0)) -> mark(0) 3.68/1.81 active(dbl(s(X))) -> mark(s(s(dbl(X)))) 3.68/1.81 active(add(0, X)) -> mark(X) 3.68/1.81 active(add(s(X), Y)) -> mark(s(add(X, Y))) 3.68/1.81 active(first(0, X)) -> mark(nil) 3.68/1.81 active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) 3.68/1.81 active(terms(X)) -> terms(active(X)) 3.68/1.81 active(cons(X1, X2)) -> cons(active(X1), X2) 3.68/1.81 active(recip(X)) -> recip(active(X)) 3.68/1.81 active(sqr(X)) -> sqr(active(X)) 3.68/1.81 active(s(X)) -> s(active(X)) 3.68/1.81 active(add(X1, X2)) -> add(active(X1), X2) 3.68/1.81 active(add(X1, X2)) -> add(X1, active(X2)) 3.68/1.81 active(dbl(X)) -> dbl(active(X)) 3.68/1.81 active(first(X1, X2)) -> first(active(X1), X2) 3.68/1.81 active(first(X1, X2)) -> first(X1, active(X2)) 3.68/1.81 terms(mark(X)) -> mark(terms(X)) 3.68/1.81 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.68/1.81 recip(mark(X)) -> mark(recip(X)) 3.68/1.81 sqr(mark(X)) -> mark(sqr(X)) 3.68/1.81 s(mark(X)) -> mark(s(X)) 3.68/1.81 add(mark(X1), X2) -> mark(add(X1, X2)) 3.68/1.81 add(X1, mark(X2)) -> mark(add(X1, X2)) 3.68/1.81 dbl(mark(X)) -> mark(dbl(X)) 3.68/1.81 first(mark(X1), X2) -> mark(first(X1, X2)) 3.68/1.81 first(X1, mark(X2)) -> mark(first(X1, X2)) 3.68/1.81 proper(terms(X)) -> terms(proper(X)) 3.68/1.81 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.68/1.81 proper(recip(X)) -> recip(proper(X)) 3.68/1.81 proper(sqr(X)) -> sqr(proper(X)) 3.68/1.81 proper(s(X)) -> s(proper(X)) 3.68/1.81 proper(0) -> ok(0) 3.68/1.81 proper(add(X1, X2)) -> add(proper(X1), proper(X2)) 3.68/1.81 proper(dbl(X)) -> dbl(proper(X)) 3.68/1.81 proper(first(X1, X2)) -> first(proper(X1), proper(X2)) 3.68/1.81 proper(nil) -> ok(nil) 3.68/1.81 terms(ok(X)) -> ok(terms(X)) 3.68/1.81 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.68/1.81 recip(ok(X)) -> ok(recip(X)) 3.68/1.81 sqr(ok(X)) -> ok(sqr(X)) 3.68/1.81 s(ok(X)) -> ok(s(X)) 3.68/1.81 add(ok(X1), ok(X2)) -> ok(add(X1, X2)) 3.68/1.81 dbl(ok(X)) -> ok(dbl(X)) 3.68/1.81 first(ok(X1), ok(X2)) -> ok(first(X1, X2)) 3.68/1.81 top(mark(X)) -> top(proper(X)) 3.68/1.81 top(ok(X)) -> top(active(X)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 active(terms(x0)) 3.68/1.81 active(cons(x0, x1)) 3.68/1.81 active(recip(x0)) 3.68/1.81 active(sqr(x0)) 3.68/1.81 active(s(x0)) 3.68/1.81 active(add(x0, x1)) 3.68/1.81 active(dbl(x0)) 3.68/1.81 active(first(x0, x1)) 3.68/1.81 terms(mark(x0)) 3.68/1.81 cons(mark(x0), x1) 3.68/1.81 recip(mark(x0)) 3.68/1.81 sqr(mark(x0)) 3.68/1.81 s(mark(x0)) 3.68/1.81 add(mark(x0), x1) 3.68/1.81 add(x0, mark(x1)) 3.68/1.81 dbl(mark(x0)) 3.68/1.81 first(mark(x0), x1) 3.68/1.81 first(x0, mark(x1)) 3.68/1.81 proper(terms(x0)) 3.68/1.81 proper(cons(x0, x1)) 3.68/1.81 proper(recip(x0)) 3.68/1.81 proper(sqr(x0)) 3.68/1.81 proper(s(x0)) 3.68/1.81 proper(0) 3.68/1.81 proper(add(x0, x1)) 3.68/1.81 proper(dbl(x0)) 3.68/1.81 proper(first(x0, x1)) 3.68/1.81 proper(nil) 3.68/1.81 terms(ok(x0)) 3.68/1.81 cons(ok(x0), ok(x1)) 3.68/1.81 recip(ok(x0)) 3.68/1.81 sqr(ok(x0)) 3.68/1.81 s(ok(x0)) 3.68/1.81 add(ok(x0), ok(x1)) 3.68/1.81 dbl(ok(x0)) 3.68/1.81 first(ok(x0), ok(x1)) 3.68/1.81 top(mark(x0)) 3.68/1.81 top(ok(x0)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (1) QTRSToCSRProof (SOUND) 3.68/1.81 The following Q TRS is given: Q restricted rewrite system: 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) 3.68/1.81 active(sqr(0)) -> mark(0) 3.68/1.81 active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) 3.68/1.81 active(dbl(0)) -> mark(0) 3.68/1.81 active(dbl(s(X))) -> mark(s(s(dbl(X)))) 3.68/1.81 active(add(0, X)) -> mark(X) 3.68/1.81 active(add(s(X), Y)) -> mark(s(add(X, Y))) 3.68/1.81 active(first(0, X)) -> mark(nil) 3.68/1.81 active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) 3.68/1.81 active(terms(X)) -> terms(active(X)) 3.68/1.81 active(cons(X1, X2)) -> cons(active(X1), X2) 3.68/1.81 active(recip(X)) -> recip(active(X)) 3.68/1.81 active(sqr(X)) -> sqr(active(X)) 3.68/1.81 active(s(X)) -> s(active(X)) 3.68/1.81 active(add(X1, X2)) -> add(active(X1), X2) 3.68/1.81 active(add(X1, X2)) -> add(X1, active(X2)) 3.68/1.81 active(dbl(X)) -> dbl(active(X)) 3.68/1.81 active(first(X1, X2)) -> first(active(X1), X2) 3.68/1.81 active(first(X1, X2)) -> first(X1, active(X2)) 3.68/1.81 terms(mark(X)) -> mark(terms(X)) 3.68/1.81 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.68/1.81 recip(mark(X)) -> mark(recip(X)) 3.68/1.81 sqr(mark(X)) -> mark(sqr(X)) 3.68/1.81 s(mark(X)) -> mark(s(X)) 3.68/1.81 add(mark(X1), X2) -> mark(add(X1, X2)) 3.68/1.81 add(X1, mark(X2)) -> mark(add(X1, X2)) 3.68/1.81 dbl(mark(X)) -> mark(dbl(X)) 3.68/1.81 first(mark(X1), X2) -> mark(first(X1, X2)) 3.68/1.81 first(X1, mark(X2)) -> mark(first(X1, X2)) 3.68/1.81 proper(terms(X)) -> terms(proper(X)) 3.68/1.81 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.68/1.81 proper(recip(X)) -> recip(proper(X)) 3.68/1.81 proper(sqr(X)) -> sqr(proper(X)) 3.68/1.81 proper(s(X)) -> s(proper(X)) 3.68/1.81 proper(0) -> ok(0) 3.68/1.81 proper(add(X1, X2)) -> add(proper(X1), proper(X2)) 3.68/1.81 proper(dbl(X)) -> dbl(proper(X)) 3.68/1.81 proper(first(X1, X2)) -> first(proper(X1), proper(X2)) 3.68/1.81 proper(nil) -> ok(nil) 3.68/1.81 terms(ok(X)) -> ok(terms(X)) 3.68/1.81 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.68/1.81 recip(ok(X)) -> ok(recip(X)) 3.68/1.81 sqr(ok(X)) -> ok(sqr(X)) 3.68/1.81 s(ok(X)) -> ok(s(X)) 3.68/1.81 add(ok(X1), ok(X2)) -> ok(add(X1, X2)) 3.68/1.81 dbl(ok(X)) -> ok(dbl(X)) 3.68/1.81 first(ok(X1), ok(X2)) -> ok(first(X1, X2)) 3.68/1.81 top(mark(X)) -> top(proper(X)) 3.68/1.81 top(ok(X)) -> top(active(X)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 active(terms(x0)) 3.68/1.81 active(cons(x0, x1)) 3.68/1.81 active(recip(x0)) 3.68/1.81 active(sqr(x0)) 3.68/1.81 active(s(x0)) 3.68/1.81 active(add(x0, x1)) 3.68/1.81 active(dbl(x0)) 3.68/1.81 active(first(x0, x1)) 3.68/1.81 terms(mark(x0)) 3.68/1.81 cons(mark(x0), x1) 3.68/1.81 recip(mark(x0)) 3.68/1.81 sqr(mark(x0)) 3.68/1.81 s(mark(x0)) 3.68/1.81 add(mark(x0), x1) 3.68/1.81 add(x0, mark(x1)) 3.68/1.81 dbl(mark(x0)) 3.68/1.81 first(mark(x0), x1) 3.68/1.81 first(x0, mark(x1)) 3.68/1.81 proper(terms(x0)) 3.68/1.81 proper(cons(x0, x1)) 3.68/1.81 proper(recip(x0)) 3.68/1.81 proper(sqr(x0)) 3.68/1.81 proper(s(x0)) 3.68/1.81 proper(0) 3.68/1.81 proper(add(x0, x1)) 3.68/1.81 proper(dbl(x0)) 3.68/1.81 proper(first(x0, x1)) 3.68/1.81 proper(nil) 3.68/1.81 terms(ok(x0)) 3.68/1.81 cons(ok(x0), ok(x1)) 3.68/1.81 recip(ok(x0)) 3.68/1.81 sqr(ok(x0)) 3.68/1.81 s(ok(x0)) 3.68/1.81 add(ok(x0), ok(x1)) 3.68/1.81 dbl(ok(x0)) 3.68/1.81 first(ok(x0), ok(x1)) 3.68/1.81 top(mark(x0)) 3.68/1.81 top(ok(x0)) 3.68/1.81 3.68/1.81 Special symbols used for the transformation (see [GM04]): 3.68/1.81 top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 3.68/1.81 The replacement map contains the following entries: 3.68/1.81 3.68/1.81 terms: {1} 3.68/1.81 cons: {1} 3.68/1.81 recip: {1} 3.68/1.81 sqr: {1} 3.68/1.81 s: {1} 3.68/1.81 0: empty set 3.68/1.81 add: {1, 2} 3.68/1.81 dbl: {1} 3.68/1.81 first: {1, 2} 3.68/1.81 nil: empty set 3.68/1.81 The QTRS contained just a subset of rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is sound, but not necessarily complete. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (2) 3.68/1.81 Obligation: 3.68/1.81 Context-sensitive rewrite system: 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The replacement map contains the following entries: 3.68/1.81 3.68/1.81 terms: {1} 3.68/1.81 cons: {1} 3.68/1.81 recip: {1} 3.68/1.81 sqr: {1} 3.68/1.81 s: {1} 3.68/1.81 0: empty set 3.68/1.81 add: {1, 2} 3.68/1.81 dbl: {1} 3.68/1.81 first: {1, 2} 3.68/1.81 nil: empty set 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (3) CSRInnermostProof (EQUIVALENT) 3.68/1.81 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (4) 3.68/1.81 Obligation: 3.68/1.81 Context-sensitive rewrite system: 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The replacement map contains the following entries: 3.68/1.81 3.68/1.81 terms: {1} 3.68/1.81 cons: {1} 3.68/1.81 recip: {1} 3.68/1.81 sqr: {1} 3.68/1.81 s: {1} 3.68/1.81 0: empty set 3.68/1.81 add: {1, 2} 3.68/1.81 dbl: {1} 3.68/1.81 first: {1, 2} 3.68/1.81 nil: empty set 3.68/1.81 3.68/1.81 3.68/1.81 Innermost Strategy. 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (5) CSDependencyPairsProof (EQUIVALENT) 3.68/1.81 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (6) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1, TERMS_1, ADD_2, DBL_1} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The ordinary context-sensitive dependency pairs DP_o are: 3.68/1.81 TERMS(N) -> SQR(N) 3.68/1.81 SQR(s(X)) -> ADD(sqr(X), dbl(X)) 3.68/1.81 SQR(s(X)) -> SQR(X) 3.68/1.81 SQR(s(X)) -> DBL(X) 3.68/1.81 DBL(s(X)) -> DBL(X) 3.68/1.81 ADD(s(X), Y) -> ADD(X, Y) 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (7) QCSDependencyGraphProof (EQUIVALENT) 3.68/1.81 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 3 less nodes. 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (8) 3.68/1.81 Complex Obligation (AND) 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (9) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, DBL_1} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 3.68/1.81 DBL(s(X)) -> DBL(X) 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (10) QCSDPSubtermProof (EQUIVALENT) 3.68/1.81 We use the subterm processor [DA_EMMES]. 3.68/1.81 3.68/1.81 3.68/1.81 The following pairs can be oriented strictly and are deleted. 3.68/1.81 3.68/1.81 DBL(s(X)) -> DBL(X) 3.68/1.81 The remaining pairs can at least be oriented weakly. 3.68/1.81 none 3.68/1.81 Used ordering: Combined order from the following AFS and order. 3.68/1.81 DBL(x1) = x1 3.68/1.81 3.68/1.81 3.68/1.81 Subterm Order 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (11) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 none 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (12) PIsEmptyProof (EQUIVALENT) 3.68/1.81 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (13) 3.68/1.81 YES 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (14) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, ADD_2} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 3.68/1.81 ADD(s(X), Y) -> ADD(X, Y) 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (15) QCSDPSubtermProof (EQUIVALENT) 3.68/1.81 We use the subterm processor [DA_EMMES]. 3.68/1.81 3.68/1.81 3.68/1.81 The following pairs can be oriented strictly and are deleted. 3.68/1.81 3.68/1.81 ADD(s(X), Y) -> ADD(X, Y) 3.68/1.81 The remaining pairs can at least be oriented weakly. 3.68/1.81 none 3.68/1.81 Used ordering: Combined order from the following AFS and order. 3.68/1.81 ADD(x1, x2) = x1 3.68/1.81 3.68/1.81 3.68/1.81 Subterm Order 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (16) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 none 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (17) PIsEmptyProof (EQUIVALENT) 3.68/1.81 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (18) 3.68/1.81 YES 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (19) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, SQR_1} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 3.68/1.81 SQR(s(X)) -> SQR(X) 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (20) QCSDPSubtermProof (EQUIVALENT) 3.68/1.81 We use the subterm processor [DA_EMMES]. 3.68/1.81 3.68/1.81 3.68/1.81 The following pairs can be oriented strictly and are deleted. 3.68/1.81 3.68/1.81 SQR(s(X)) -> SQR(X) 3.68/1.81 The remaining pairs can at least be oriented weakly. 3.68/1.81 none 3.68/1.81 Used ordering: Combined order from the following AFS and order. 3.68/1.81 SQR(x1) = x1 3.68/1.81 3.68/1.81 3.68/1.81 Subterm Order 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (21) 3.68/1.81 Obligation: 3.68/1.81 Q-restricted context-sensitive dependency pair problem: 3.68/1.81 The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2} are replacing on all positions. 3.68/1.81 For all symbols f in {cons_2} we have mu(f) = {1}. 3.68/1.81 3.68/1.81 The TRS P consists of the following rules: 3.68/1.81 none 3.68/1.81 3.68/1.81 The TRS R consists of the following rules: 3.68/1.81 3.68/1.81 terms(N) -> cons(recip(sqr(N)), terms(s(N))) 3.68/1.81 sqr(0) -> 0 3.68/1.81 sqr(s(X)) -> s(add(sqr(X), dbl(X))) 3.68/1.81 dbl(0) -> 0 3.68/1.81 dbl(s(X)) -> s(s(dbl(X))) 3.68/1.81 add(0, X) -> X 3.68/1.81 add(s(X), Y) -> s(add(X, Y)) 3.68/1.81 first(0, X) -> nil 3.68/1.81 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 3.68/1.81 3.68/1.81 The set Q consists of the following terms: 3.68/1.81 3.68/1.81 terms(x0) 3.68/1.81 sqr(0) 3.68/1.81 sqr(s(x0)) 3.68/1.81 dbl(0) 3.68/1.81 dbl(s(x0)) 3.68/1.81 add(0, x0) 3.68/1.81 add(s(x0), x1) 3.68/1.81 first(0, x0) 3.68/1.81 first(s(x0), cons(x1, x2)) 3.68/1.81 3.68/1.81 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (22) PIsEmptyProof (EQUIVALENT) 3.68/1.81 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.68/1.81 ---------------------------------------- 3.68/1.81 3.68/1.81 (23) 3.68/1.81 YES 3.68/1.84 EOF