3.60/2.85 YES 3.60/2.86 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.60/2.86 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.60/2.86 3.60/2.86 3.60/2.86 Termination w.r.t. Q of the given QTRS could be proven: 3.60/2.86 3.60/2.86 (0) QTRS 3.60/2.86 (1) QTRSToCSRProof [SOUND, 0 ms] 3.60/2.86 (2) CSR 3.60/2.86 (3) CSRInnermostProof [EQUIVALENT, 0 ms] 3.60/2.86 (4) CSR 3.60/2.86 (5) CSDependencyPairsProof [EQUIVALENT, 0 ms] 3.60/2.86 (6) QCSDP 3.60/2.86 (7) QCSDependencyGraphProof [EQUIVALENT, 0 ms] 3.60/2.86 (8) AND 3.60/2.86 (9) QCSDP 3.60/2.86 (10) QCSDPSubtermProof [EQUIVALENT, 4 ms] 3.60/2.86 (11) QCSDP 3.60/2.86 (12) PIsEmptyProof [EQUIVALENT, 0 ms] 3.60/2.86 (13) YES 3.60/2.86 (14) QCSDP 3.60/2.86 (15) QCSDPSubtermProof [EQUIVALENT, 9 ms] 3.60/2.86 (16) QCSDP 3.60/2.86 (17) PIsEmptyProof [EQUIVALENT, 0 ms] 3.60/2.86 (18) YES 3.60/2.86 (19) QCSDP 3.60/2.86 (20) QCSDPSubtermProof [EQUIVALENT, 3 ms] 3.60/2.86 (21) QCSDP 3.60/2.86 (22) PIsEmptyProof [EQUIVALENT, 0 ms] 3.60/2.86 (23) YES 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (0) 3.60/2.86 Obligation: 3.60/2.86 Q restricted rewrite system: 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 active(f(X)) -> mark(cons(X, f(g(X)))) 3.60/2.86 active(g(0)) -> mark(s(0)) 3.60/2.86 active(g(s(X))) -> mark(s(s(g(X)))) 3.60/2.86 active(sel(0, cons(X, Y))) -> mark(X) 3.60/2.86 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 3.60/2.86 active(f(X)) -> f(active(X)) 3.60/2.86 active(cons(X1, X2)) -> cons(active(X1), X2) 3.60/2.86 active(g(X)) -> g(active(X)) 3.60/2.86 active(s(X)) -> s(active(X)) 3.60/2.86 active(sel(X1, X2)) -> sel(active(X1), X2) 3.60/2.86 active(sel(X1, X2)) -> sel(X1, active(X2)) 3.60/2.86 f(mark(X)) -> mark(f(X)) 3.60/2.86 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.60/2.86 g(mark(X)) -> mark(g(X)) 3.60/2.86 s(mark(X)) -> mark(s(X)) 3.60/2.86 sel(mark(X1), X2) -> mark(sel(X1, X2)) 3.60/2.86 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 3.60/2.86 proper(f(X)) -> f(proper(X)) 3.60/2.86 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.60/2.86 proper(g(X)) -> g(proper(X)) 3.60/2.86 proper(0) -> ok(0) 3.60/2.86 proper(s(X)) -> s(proper(X)) 3.60/2.86 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 3.60/2.86 f(ok(X)) -> ok(f(X)) 3.60/2.86 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.60/2.86 g(ok(X)) -> ok(g(X)) 3.60/2.86 s(ok(X)) -> ok(s(X)) 3.60/2.86 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 3.60/2.86 top(mark(X)) -> top(proper(X)) 3.60/2.86 top(ok(X)) -> top(active(X)) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 active(f(x0)) 3.60/2.86 active(cons(x0, x1)) 3.60/2.86 active(g(x0)) 3.60/2.86 active(s(x0)) 3.60/2.86 active(sel(x0, x1)) 3.60/2.86 f(mark(x0)) 3.60/2.86 cons(mark(x0), x1) 3.60/2.86 g(mark(x0)) 3.60/2.86 s(mark(x0)) 3.60/2.86 sel(mark(x0), x1) 3.60/2.86 sel(x0, mark(x1)) 3.60/2.86 proper(f(x0)) 3.60/2.86 proper(cons(x0, x1)) 3.60/2.86 proper(g(x0)) 3.60/2.86 proper(0) 3.60/2.86 proper(s(x0)) 3.60/2.86 proper(sel(x0, x1)) 3.60/2.86 f(ok(x0)) 3.60/2.86 cons(ok(x0), ok(x1)) 3.60/2.86 g(ok(x0)) 3.60/2.86 s(ok(x0)) 3.60/2.86 sel(ok(x0), ok(x1)) 3.60/2.86 top(mark(x0)) 3.60/2.86 top(ok(x0)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (1) QTRSToCSRProof (SOUND) 3.60/2.86 The following Q TRS is given: Q restricted rewrite system: 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 active(f(X)) -> mark(cons(X, f(g(X)))) 3.60/2.86 active(g(0)) -> mark(s(0)) 3.60/2.86 active(g(s(X))) -> mark(s(s(g(X)))) 3.60/2.86 active(sel(0, cons(X, Y))) -> mark(X) 3.60/2.86 active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) 3.60/2.86 active(f(X)) -> f(active(X)) 3.60/2.86 active(cons(X1, X2)) -> cons(active(X1), X2) 3.60/2.86 active(g(X)) -> g(active(X)) 3.60/2.86 active(s(X)) -> s(active(X)) 3.60/2.86 active(sel(X1, X2)) -> sel(active(X1), X2) 3.60/2.86 active(sel(X1, X2)) -> sel(X1, active(X2)) 3.60/2.86 f(mark(X)) -> mark(f(X)) 3.60/2.86 cons(mark(X1), X2) -> mark(cons(X1, X2)) 3.60/2.86 g(mark(X)) -> mark(g(X)) 3.60/2.86 s(mark(X)) -> mark(s(X)) 3.60/2.86 sel(mark(X1), X2) -> mark(sel(X1, X2)) 3.60/2.86 sel(X1, mark(X2)) -> mark(sel(X1, X2)) 3.60/2.86 proper(f(X)) -> f(proper(X)) 3.60/2.86 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 3.60/2.86 proper(g(X)) -> g(proper(X)) 3.60/2.86 proper(0) -> ok(0) 3.60/2.86 proper(s(X)) -> s(proper(X)) 3.60/2.86 proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) 3.60/2.86 f(ok(X)) -> ok(f(X)) 3.60/2.86 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 3.60/2.86 g(ok(X)) -> ok(g(X)) 3.60/2.86 s(ok(X)) -> ok(s(X)) 3.60/2.86 sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) 3.60/2.86 top(mark(X)) -> top(proper(X)) 3.60/2.86 top(ok(X)) -> top(active(X)) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 active(f(x0)) 3.60/2.86 active(cons(x0, x1)) 3.60/2.86 active(g(x0)) 3.60/2.86 active(s(x0)) 3.60/2.86 active(sel(x0, x1)) 3.60/2.86 f(mark(x0)) 3.60/2.86 cons(mark(x0), x1) 3.60/2.86 g(mark(x0)) 3.60/2.86 s(mark(x0)) 3.60/2.86 sel(mark(x0), x1) 3.60/2.86 sel(x0, mark(x1)) 3.60/2.86 proper(f(x0)) 3.60/2.86 proper(cons(x0, x1)) 3.60/2.86 proper(g(x0)) 3.60/2.86 proper(0) 3.60/2.86 proper(s(x0)) 3.60/2.86 proper(sel(x0, x1)) 3.60/2.86 f(ok(x0)) 3.60/2.86 cons(ok(x0), ok(x1)) 3.60/2.86 g(ok(x0)) 3.60/2.86 s(ok(x0)) 3.60/2.86 sel(ok(x0), ok(x1)) 3.60/2.86 top(mark(x0)) 3.60/2.86 top(ok(x0)) 3.60/2.86 3.60/2.86 Special symbols used for the transformation (see [GM04]): 3.60/2.86 top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 3.60/2.86 The replacement map contains the following entries: 3.60/2.86 3.60/2.86 f: {1} 3.60/2.86 cons: {1} 3.60/2.86 g: {1} 3.60/2.86 0: empty set 3.60/2.86 s: {1} 3.60/2.86 sel: {1, 2} 3.60/2.86 The QTRS contained just a subset of rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is sound, but not necessarily complete. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (2) 3.60/2.86 Obligation: 3.60/2.86 Context-sensitive rewrite system: 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The replacement map contains the following entries: 3.60/2.86 3.60/2.86 f: {1} 3.60/2.86 cons: {1} 3.60/2.86 g: {1} 3.60/2.86 0: empty set 3.60/2.86 s: {1} 3.60/2.86 sel: {1, 2} 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (3) CSRInnermostProof (EQUIVALENT) 3.60/2.86 The CSR is orthogonal. By [CS_Inn] we can switch to innermost. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (4) 3.60/2.86 Obligation: 3.60/2.86 Context-sensitive rewrite system: 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The replacement map contains the following entries: 3.60/2.86 3.60/2.86 f: {1} 3.60/2.86 cons: {1} 3.60/2.86 g: {1} 3.60/2.86 0: empty set 3.60/2.86 s: {1} 3.60/2.86 sel: {1, 2} 3.60/2.86 3.60/2.86 3.60/2.86 Innermost Strategy. 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (5) CSDependencyPairsProof (EQUIVALENT) 3.60/2.86 Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (6) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2, G_1, SEL_2, F_1} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 The symbols in {U_1} are not replacing on any position. 3.60/2.86 3.60/2.86 The ordinary context-sensitive dependency pairs DP_o are: 3.60/2.86 G(s(X)) -> G(X) 3.60/2.86 SEL(s(X), cons(Y, Z)) -> SEL(X, Z) 3.60/2.86 3.60/2.86 The collapsing dependency pairs are DP_c: 3.60/2.86 SEL(s(X), cons(Y, Z)) -> Z 3.60/2.86 3.60/2.86 3.60/2.86 The hidden terms of R are: 3.60/2.86 3.60/2.86 f(g(x0)) 3.60/2.86 g(x0) 3.60/2.86 3.60/2.86 Every hiding context is built from: 3.60/2.86 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@4f65c3e7 3.60/2.86 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@50daa61d 3.60/2.86 3.60/2.86 Hence, the new unhiding pairs DP_u are : 3.60/2.86 SEL(s(X), cons(Y, Z)) -> U(Z) 3.60/2.86 U(g(x_0)) -> U(x_0) 3.60/2.86 U(f(x_0)) -> U(x_0) 3.60/2.86 U(f(g(x0))) -> F(g(x0)) 3.60/2.86 U(g(x0)) -> G(x0) 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (7) QCSDependencyGraphProof (EQUIVALENT) 3.60/2.86 The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 3 less nodes. 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (8) 3.60/2.86 Complex Obligation (AND) 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (9) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2, G_1} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 3.60/2.86 G(s(X)) -> G(X) 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (10) QCSDPSubtermProof (EQUIVALENT) 3.60/2.86 We use the subterm processor [DA_EMMES]. 3.60/2.86 3.60/2.86 3.60/2.86 The following pairs can be oriented strictly and are deleted. 3.60/2.86 3.60/2.86 G(s(X)) -> G(X) 3.60/2.86 The remaining pairs can at least be oriented weakly. 3.60/2.86 none 3.60/2.86 Used ordering: Combined order from the following AFS and order. 3.60/2.86 G(x1) = x1 3.60/2.86 3.60/2.86 3.60/2.86 Subterm Order 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (11) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 none 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (12) PIsEmptyProof (EQUIVALENT) 3.60/2.86 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (13) 3.60/2.86 YES 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (14) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 The symbols in {U_1} are not replacing on any position. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 3.60/2.86 U(g(x_0)) -> U(x_0) 3.60/2.86 U(f(x_0)) -> U(x_0) 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (15) QCSDPSubtermProof (EQUIVALENT) 3.60/2.86 We use the subterm processor [DA_EMMES]. 3.60/2.86 3.60/2.86 3.60/2.86 The following pairs can be oriented strictly and are deleted. 3.60/2.86 3.60/2.86 U(g(x_0)) -> U(x_0) 3.60/2.86 U(f(x_0)) -> U(x_0) 3.60/2.86 The remaining pairs can at least be oriented weakly. 3.60/2.86 none 3.60/2.86 Used ordering: Combined order from the following AFS and order. 3.60/2.86 U(x1) = x1 3.60/2.86 3.60/2.86 3.60/2.86 Subterm Order 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (16) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 none 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (17) PIsEmptyProof (EQUIVALENT) 3.60/2.86 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (18) 3.60/2.86 YES 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (19) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2, SEL_2} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 3.60/2.86 SEL(s(X), cons(Y, Z)) -> SEL(X, Z) 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (20) QCSDPSubtermProof (EQUIVALENT) 3.60/2.86 We use the subterm processor [DA_EMMES]. 3.60/2.86 3.60/2.86 3.60/2.86 The following pairs can be oriented strictly and are deleted. 3.60/2.86 3.60/2.86 SEL(s(X), cons(Y, Z)) -> SEL(X, Z) 3.60/2.86 The remaining pairs can at least be oriented weakly. 3.60/2.86 none 3.60/2.86 Used ordering: Combined order from the following AFS and order. 3.60/2.86 SEL(x1, x2) = x1 3.60/2.86 3.60/2.86 3.60/2.86 Subterm Order 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (21) 3.60/2.86 Obligation: 3.60/2.86 Q-restricted context-sensitive dependency pair problem: 3.60/2.86 The symbols in {f_1, g_1, s_1, sel_2} are replacing on all positions. 3.60/2.86 For all symbols f in {cons_2} we have mu(f) = {1}. 3.60/2.86 3.60/2.86 The TRS P consists of the following rules: 3.60/2.86 none 3.60/2.86 3.60/2.86 The TRS R consists of the following rules: 3.60/2.86 3.60/2.86 f(X) -> cons(X, f(g(X))) 3.60/2.86 g(0) -> s(0) 3.60/2.86 g(s(X)) -> s(s(g(X))) 3.60/2.86 sel(0, cons(X, Y)) -> X 3.60/2.86 sel(s(X), cons(Y, Z)) -> sel(X, Z) 3.60/2.86 3.60/2.86 The set Q consists of the following terms: 3.60/2.86 3.60/2.86 f(x0) 3.60/2.86 g(0) 3.60/2.86 g(s(x0)) 3.60/2.86 sel(0, cons(x0, x1)) 3.60/2.86 sel(s(x0), cons(x1, x2)) 3.60/2.86 3.60/2.86 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (22) PIsEmptyProof (EQUIVALENT) 3.60/2.86 The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. 3.60/2.86 ---------------------------------------- 3.60/2.86 3.60/2.86 (23) 3.60/2.86 YES 3.60/2.87 EOF