5.59/2.43 YES 5.72/2.43 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 5.72/2.43 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.72/2.43 5.72/2.43 5.72/2.43 Termination w.r.t. Q of the given QTRS could be proven: 5.72/2.43 5.72/2.43 (0) QTRS 5.72/2.43 (1) DependencyPairsProof [EQUIVALENT, 25 ms] 5.72/2.43 (2) QDP 5.72/2.43 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 5.72/2.43 (4) QDP 5.72/2.43 (5) QDPOrderProof [EQUIVALENT, 93 ms] 5.72/2.43 (6) QDP 5.72/2.43 (7) DependencyGraphProof [EQUIVALENT, 0 ms] 5.72/2.43 (8) QDP 5.72/2.43 (9) UsableRulesProof [EQUIVALENT, 0 ms] 5.72/2.43 (10) QDP 5.72/2.43 (11) QReductionProof [EQUIVALENT, 0 ms] 5.72/2.43 (12) QDP 5.72/2.43 (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] 5.72/2.43 (14) YES 5.72/2.43 5.72/2.43 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (0) 5.72/2.43 Obligation: 5.72/2.43 Q restricted rewrite system: 5.72/2.43 The TRS R consists of the following rules: 5.72/2.43 5.72/2.43 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.43 a__sqr(0) -> 0 5.72/2.43 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.43 a__dbl(0) -> 0 5.72/2.43 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.43 a__add(0, X) -> mark(X) 5.72/2.43 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.43 a__first(0, X) -> nil 5.72/2.43 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.43 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.43 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.43 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.43 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.43 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.43 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.43 mark(recip(X)) -> recip(mark(X)) 5.72/2.43 mark(s(X)) -> s(X) 5.72/2.43 mark(0) -> 0 5.72/2.43 mark(nil) -> nil 5.72/2.43 a__terms(X) -> terms(X) 5.72/2.43 a__sqr(X) -> sqr(X) 5.72/2.43 a__add(X1, X2) -> add(X1, X2) 5.72/2.43 a__dbl(X) -> dbl(X) 5.72/2.43 a__first(X1, X2) -> first(X1, X2) 5.72/2.43 5.72/2.43 The set Q consists of the following terms: 5.72/2.43 5.72/2.43 a__terms(x0) 5.72/2.43 mark(terms(x0)) 5.72/2.43 mark(sqr(x0)) 5.72/2.43 mark(add(x0, x1)) 5.72/2.43 mark(dbl(x0)) 5.72/2.43 mark(first(x0, x1)) 5.72/2.43 mark(cons(x0, x1)) 5.72/2.43 mark(recip(x0)) 5.72/2.43 mark(s(x0)) 5.72/2.43 mark(0) 5.72/2.43 mark(nil) 5.72/2.43 a__sqr(x0) 5.72/2.43 a__add(x0, x1) 5.72/2.43 a__dbl(x0) 5.72/2.43 a__first(x0, x1) 5.72/2.43 5.72/2.43 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (1) DependencyPairsProof (EQUIVALENT) 5.72/2.43 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (2) 5.72/2.43 Obligation: 5.72/2.43 Q DP problem: 5.72/2.43 The TRS P consists of the following rules: 5.72/2.43 5.72/2.43 A__TERMS(N) -> A__SQR(mark(N)) 5.72/2.43 A__TERMS(N) -> MARK(N) 5.72/2.43 A__ADD(0, X) -> MARK(X) 5.72/2.43 A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) 5.72/2.43 MARK(terms(X)) -> A__TERMS(mark(X)) 5.72/2.43 MARK(terms(X)) -> MARK(X) 5.72/2.43 MARK(sqr(X)) -> A__SQR(mark(X)) 5.72/2.43 MARK(sqr(X)) -> MARK(X) 5.72/2.43 MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X2) 5.72/2.43 MARK(dbl(X)) -> A__DBL(mark(X)) 5.72/2.43 MARK(dbl(X)) -> MARK(X) 5.72/2.43 MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X2) 5.72/2.43 MARK(cons(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(recip(X)) -> MARK(X) 5.72/2.43 5.72/2.43 The TRS R consists of the following rules: 5.72/2.43 5.72/2.43 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.43 a__sqr(0) -> 0 5.72/2.43 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.43 a__dbl(0) -> 0 5.72/2.43 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.43 a__add(0, X) -> mark(X) 5.72/2.43 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.43 a__first(0, X) -> nil 5.72/2.43 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.43 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.43 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.43 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.43 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.43 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.43 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.43 mark(recip(X)) -> recip(mark(X)) 5.72/2.43 mark(s(X)) -> s(X) 5.72/2.43 mark(0) -> 0 5.72/2.43 mark(nil) -> nil 5.72/2.43 a__terms(X) -> terms(X) 5.72/2.43 a__sqr(X) -> sqr(X) 5.72/2.43 a__add(X1, X2) -> add(X1, X2) 5.72/2.43 a__dbl(X) -> dbl(X) 5.72/2.43 a__first(X1, X2) -> first(X1, X2) 5.72/2.43 5.72/2.43 The set Q consists of the following terms: 5.72/2.43 5.72/2.43 a__terms(x0) 5.72/2.43 mark(terms(x0)) 5.72/2.43 mark(sqr(x0)) 5.72/2.43 mark(add(x0, x1)) 5.72/2.43 mark(dbl(x0)) 5.72/2.43 mark(first(x0, x1)) 5.72/2.43 mark(cons(x0, x1)) 5.72/2.43 mark(recip(x0)) 5.72/2.43 mark(s(x0)) 5.72/2.43 mark(0) 5.72/2.43 mark(nil) 5.72/2.43 a__sqr(x0) 5.72/2.43 a__add(x0, x1) 5.72/2.43 a__dbl(x0) 5.72/2.43 a__first(x0, x1) 5.72/2.43 5.72/2.43 We have to consider all minimal (P,Q,R)-chains. 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (3) DependencyGraphProof (EQUIVALENT) 5.72/2.43 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (4) 5.72/2.43 Obligation: 5.72/2.43 Q DP problem: 5.72/2.43 The TRS P consists of the following rules: 5.72/2.43 5.72/2.43 A__TERMS(N) -> MARK(N) 5.72/2.43 MARK(terms(X)) -> A__TERMS(mark(X)) 5.72/2.43 MARK(terms(X)) -> MARK(X) 5.72/2.43 MARK(sqr(X)) -> MARK(X) 5.72/2.43 MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) 5.72/2.43 A__ADD(0, X) -> MARK(X) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X2) 5.72/2.43 MARK(dbl(X)) -> MARK(X) 5.72/2.43 MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) 5.72/2.43 A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X2) 5.72/2.43 MARK(cons(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(recip(X)) -> MARK(X) 5.72/2.43 5.72/2.43 The TRS R consists of the following rules: 5.72/2.43 5.72/2.43 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.43 a__sqr(0) -> 0 5.72/2.43 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.43 a__dbl(0) -> 0 5.72/2.43 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.43 a__add(0, X) -> mark(X) 5.72/2.43 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.43 a__first(0, X) -> nil 5.72/2.43 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.43 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.43 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.43 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.43 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.43 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.43 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.43 mark(recip(X)) -> recip(mark(X)) 5.72/2.43 mark(s(X)) -> s(X) 5.72/2.43 mark(0) -> 0 5.72/2.43 mark(nil) -> nil 5.72/2.43 a__terms(X) -> terms(X) 5.72/2.43 a__sqr(X) -> sqr(X) 5.72/2.43 a__add(X1, X2) -> add(X1, X2) 5.72/2.43 a__dbl(X) -> dbl(X) 5.72/2.43 a__first(X1, X2) -> first(X1, X2) 5.72/2.43 5.72/2.43 The set Q consists of the following terms: 5.72/2.43 5.72/2.43 a__terms(x0) 5.72/2.43 mark(terms(x0)) 5.72/2.43 mark(sqr(x0)) 5.72/2.43 mark(add(x0, x1)) 5.72/2.43 mark(dbl(x0)) 5.72/2.43 mark(first(x0, x1)) 5.72/2.43 mark(cons(x0, x1)) 5.72/2.43 mark(recip(x0)) 5.72/2.43 mark(s(x0)) 5.72/2.43 mark(0) 5.72/2.43 mark(nil) 5.72/2.43 a__sqr(x0) 5.72/2.43 a__add(x0, x1) 5.72/2.43 a__dbl(x0) 5.72/2.43 a__first(x0, x1) 5.72/2.43 5.72/2.43 We have to consider all minimal (P,Q,R)-chains. 5.72/2.43 ---------------------------------------- 5.72/2.43 5.72/2.43 (5) QDPOrderProof (EQUIVALENT) 5.72/2.43 We use the reduction pair processor [LPAR04,JAR06]. 5.72/2.43 5.72/2.43 5.72/2.43 The following pairs can be oriented strictly and are deleted. 5.72/2.43 5.72/2.43 A__TERMS(N) -> MARK(N) 5.72/2.43 MARK(terms(X)) -> A__TERMS(mark(X)) 5.72/2.43 MARK(terms(X)) -> MARK(X) 5.72/2.43 MARK(add(X1, X2)) -> A__ADD(mark(X1), mark(X2)) 5.72/2.43 A__ADD(0, X) -> MARK(X) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(add(X1, X2)) -> MARK(X2) 5.72/2.43 A__FIRST(s(X), cons(Y, Z)) -> MARK(Y) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X1) 5.72/2.43 MARK(first(X1, X2)) -> MARK(X2) 5.72/2.43 MARK(cons(X1, X2)) -> MARK(X1) 5.72/2.43 The remaining pairs can at least be oriented weakly. 5.72/2.43 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 5.72/2.43 5.72/2.43 POL( A__ADD_2(x_1, x_2) ) = 2x_2 + 1 5.72/2.43 POL( A__FIRST_2(x_1, x_2) ) = x_1 + 2x_2 + 2 5.72/2.43 POL( A__TERMS_1(x_1) ) = 2x_1 + 1 5.72/2.43 POL( mark_1(x_1) ) = x_1 5.72/2.43 POL( terms_1(x_1) ) = 2x_1 + 1 5.72/2.43 POL( a__terms_1(x_1) ) = 2x_1 + 1 5.72/2.43 POL( sqr_1(x_1) ) = x_1 5.72/2.43 POL( a__sqr_1(x_1) ) = x_1 5.72/2.43 POL( add_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 5.72/2.43 POL( a__add_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 5.72/2.43 POL( 0 ) = 0 5.72/2.43 POL( dbl_1(x_1) ) = x_1 5.72/2.43 POL( a__dbl_1(x_1) ) = x_1 5.72/2.43 POL( first_2(x_1, x_2) ) = x_1 + x_2 + 1 5.72/2.43 POL( a__first_2(x_1, x_2) ) = x_1 + x_2 + 1 5.72/2.43 POL( cons_2(x_1, x_2) ) = x_1 + 1 5.72/2.44 POL( recip_1(x_1) ) = x_1 5.72/2.44 POL( s_1(x_1) ) = 2 5.72/2.44 POL( nil ) = 0 5.72/2.44 POL( MARK_1(x_1) ) = 2x_1 5.72/2.44 5.72/2.44 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 5.72/2.44 5.72/2.44 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.44 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.44 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.44 a__add(0, X) -> mark(X) 5.72/2.44 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.44 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.44 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.44 mark(recip(X)) -> recip(mark(X)) 5.72/2.44 mark(s(X)) -> s(X) 5.72/2.44 mark(0) -> 0 5.72/2.44 mark(nil) -> nil 5.72/2.44 a__terms(X) -> terms(X) 5.72/2.44 a__sqr(0) -> 0 5.72/2.44 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.44 a__sqr(X) -> sqr(X) 5.72/2.44 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.44 a__add(X1, X2) -> add(X1, X2) 5.72/2.44 a__dbl(0) -> 0 5.72/2.44 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.44 a__dbl(X) -> dbl(X) 5.72/2.44 a__first(0, X) -> nil 5.72/2.44 a__first(X1, X2) -> first(X1, X2) 5.72/2.44 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.44 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.44 5.72/2.44 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (6) 5.72/2.44 Obligation: 5.72/2.44 Q DP problem: 5.72/2.44 The TRS P consists of the following rules: 5.72/2.44 5.72/2.44 MARK(sqr(X)) -> MARK(X) 5.72/2.44 MARK(dbl(X)) -> MARK(X) 5.72/2.44 MARK(first(X1, X2)) -> A__FIRST(mark(X1), mark(X2)) 5.72/2.44 MARK(recip(X)) -> MARK(X) 5.72/2.44 5.72/2.44 The TRS R consists of the following rules: 5.72/2.44 5.72/2.44 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.44 a__sqr(0) -> 0 5.72/2.44 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.44 a__dbl(0) -> 0 5.72/2.44 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.44 a__add(0, X) -> mark(X) 5.72/2.44 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.44 a__first(0, X) -> nil 5.72/2.44 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.44 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.44 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.44 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.44 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.44 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.44 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.44 mark(recip(X)) -> recip(mark(X)) 5.72/2.44 mark(s(X)) -> s(X) 5.72/2.44 mark(0) -> 0 5.72/2.44 mark(nil) -> nil 5.72/2.44 a__terms(X) -> terms(X) 5.72/2.44 a__sqr(X) -> sqr(X) 5.72/2.44 a__add(X1, X2) -> add(X1, X2) 5.72/2.44 a__dbl(X) -> dbl(X) 5.72/2.44 a__first(X1, X2) -> first(X1, X2) 5.72/2.44 5.72/2.44 The set Q consists of the following terms: 5.72/2.44 5.72/2.44 a__terms(x0) 5.72/2.44 mark(terms(x0)) 5.72/2.44 mark(sqr(x0)) 5.72/2.44 mark(add(x0, x1)) 5.72/2.44 mark(dbl(x0)) 5.72/2.44 mark(first(x0, x1)) 5.72/2.44 mark(cons(x0, x1)) 5.72/2.44 mark(recip(x0)) 5.72/2.44 mark(s(x0)) 5.72/2.44 mark(0) 5.72/2.44 mark(nil) 5.72/2.44 a__sqr(x0) 5.72/2.44 a__add(x0, x1) 5.72/2.44 a__dbl(x0) 5.72/2.44 a__first(x0, x1) 5.72/2.44 5.72/2.44 We have to consider all minimal (P,Q,R)-chains. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (7) DependencyGraphProof (EQUIVALENT) 5.72/2.44 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (8) 5.72/2.44 Obligation: 5.72/2.44 Q DP problem: 5.72/2.44 The TRS P consists of the following rules: 5.72/2.44 5.72/2.44 MARK(dbl(X)) -> MARK(X) 5.72/2.44 MARK(sqr(X)) -> MARK(X) 5.72/2.44 MARK(recip(X)) -> MARK(X) 5.72/2.44 5.72/2.44 The TRS R consists of the following rules: 5.72/2.44 5.72/2.44 a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) 5.72/2.44 a__sqr(0) -> 0 5.72/2.44 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) 5.72/2.44 a__dbl(0) -> 0 5.72/2.44 a__dbl(s(X)) -> s(s(dbl(X))) 5.72/2.44 a__add(0, X) -> mark(X) 5.72/2.44 a__add(s(X), Y) -> s(add(X, Y)) 5.72/2.44 a__first(0, X) -> nil 5.72/2.44 a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) 5.72/2.44 mark(terms(X)) -> a__terms(mark(X)) 5.72/2.44 mark(sqr(X)) -> a__sqr(mark(X)) 5.72/2.44 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 5.72/2.44 mark(dbl(X)) -> a__dbl(mark(X)) 5.72/2.44 mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) 5.72/2.44 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.72/2.44 mark(recip(X)) -> recip(mark(X)) 5.72/2.44 mark(s(X)) -> s(X) 5.72/2.44 mark(0) -> 0 5.72/2.44 mark(nil) -> nil 5.72/2.44 a__terms(X) -> terms(X) 5.72/2.44 a__sqr(X) -> sqr(X) 5.72/2.44 a__add(X1, X2) -> add(X1, X2) 5.72/2.44 a__dbl(X) -> dbl(X) 5.72/2.44 a__first(X1, X2) -> first(X1, X2) 5.72/2.44 5.72/2.44 The set Q consists of the following terms: 5.72/2.44 5.72/2.44 a__terms(x0) 5.72/2.44 mark(terms(x0)) 5.72/2.44 mark(sqr(x0)) 5.72/2.44 mark(add(x0, x1)) 5.72/2.44 mark(dbl(x0)) 5.72/2.44 mark(first(x0, x1)) 5.72/2.44 mark(cons(x0, x1)) 5.72/2.44 mark(recip(x0)) 5.72/2.44 mark(s(x0)) 5.72/2.44 mark(0) 5.72/2.44 mark(nil) 5.72/2.44 a__sqr(x0) 5.72/2.44 a__add(x0, x1) 5.72/2.44 a__dbl(x0) 5.72/2.44 a__first(x0, x1) 5.72/2.44 5.72/2.44 We have to consider all minimal (P,Q,R)-chains. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (9) UsableRulesProof (EQUIVALENT) 5.72/2.44 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (10) 5.72/2.44 Obligation: 5.72/2.44 Q DP problem: 5.72/2.44 The TRS P consists of the following rules: 5.72/2.44 5.72/2.44 MARK(dbl(X)) -> MARK(X) 5.72/2.44 MARK(sqr(X)) -> MARK(X) 5.72/2.44 MARK(recip(X)) -> MARK(X) 5.72/2.44 5.72/2.44 R is empty. 5.72/2.44 The set Q consists of the following terms: 5.72/2.44 5.72/2.44 a__terms(x0) 5.72/2.44 mark(terms(x0)) 5.72/2.44 mark(sqr(x0)) 5.72/2.44 mark(add(x0, x1)) 5.72/2.44 mark(dbl(x0)) 5.72/2.44 mark(first(x0, x1)) 5.72/2.44 mark(cons(x0, x1)) 5.72/2.44 mark(recip(x0)) 5.72/2.44 mark(s(x0)) 5.72/2.44 mark(0) 5.72/2.44 mark(nil) 5.72/2.44 a__sqr(x0) 5.72/2.44 a__add(x0, x1) 5.72/2.44 a__dbl(x0) 5.72/2.44 a__first(x0, x1) 5.72/2.44 5.72/2.44 We have to consider all minimal (P,Q,R)-chains. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (11) QReductionProof (EQUIVALENT) 5.72/2.44 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 5.72/2.44 5.72/2.44 a__terms(x0) 5.72/2.44 mark(terms(x0)) 5.72/2.44 mark(sqr(x0)) 5.72/2.44 mark(add(x0, x1)) 5.72/2.44 mark(dbl(x0)) 5.72/2.44 mark(first(x0, x1)) 5.72/2.44 mark(cons(x0, x1)) 5.72/2.44 mark(recip(x0)) 5.72/2.44 mark(s(x0)) 5.72/2.44 mark(0) 5.72/2.44 mark(nil) 5.72/2.44 a__sqr(x0) 5.72/2.44 a__add(x0, x1) 5.72/2.44 a__dbl(x0) 5.72/2.44 a__first(x0, x1) 5.72/2.44 5.72/2.44 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (12) 5.72/2.44 Obligation: 5.72/2.44 Q DP problem: 5.72/2.44 The TRS P consists of the following rules: 5.72/2.44 5.72/2.44 MARK(dbl(X)) -> MARK(X) 5.72/2.44 MARK(sqr(X)) -> MARK(X) 5.72/2.44 MARK(recip(X)) -> MARK(X) 5.72/2.44 5.72/2.44 R is empty. 5.72/2.44 Q is empty. 5.72/2.44 We have to consider all minimal (P,Q,R)-chains. 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (13) QDPSizeChangeProof (EQUIVALENT) 5.72/2.44 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 5.72/2.44 5.72/2.44 From the DPs we obtained the following set of size-change graphs: 5.72/2.44 *MARK(dbl(X)) -> MARK(X) 5.72/2.44 The graph contains the following edges 1 > 1 5.72/2.44 5.72/2.44 5.72/2.44 *MARK(sqr(X)) -> MARK(X) 5.72/2.44 The graph contains the following edges 1 > 1 5.72/2.44 5.72/2.44 5.72/2.44 *MARK(recip(X)) -> MARK(X) 5.72/2.44 The graph contains the following edges 1 > 1 5.72/2.44 5.72/2.44 5.72/2.44 ---------------------------------------- 5.72/2.44 5.72/2.44 (14) 5.72/2.44 YES 5.76/2.49 EOF