11.26/3.74 YES 11.31/3.80 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 11.31/3.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 11.31/3.80 11.31/3.80 11.31/3.80 Termination w.r.t. Q of the given QTRS could be proven: 11.31/3.80 11.31/3.80 (0) QTRS 11.31/3.80 (1) QTRS Reverse [SOUND, 0 ms] 11.31/3.80 (2) QTRS 11.31/3.80 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 11.31/3.80 (4) QDP 11.31/3.80 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 11.31/3.80 (6) AND 11.31/3.80 (7) QDP 11.31/3.80 (8) UsableRulesProof [EQUIVALENT, 0 ms] 11.31/3.80 (9) QDP 11.31/3.80 (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] 11.31/3.80 (11) YES 11.31/3.80 (12) QDP 11.31/3.80 (13) UsableRulesProof [EQUIVALENT, 0 ms] 11.31/3.80 (14) QDP 11.31/3.80 (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] 11.31/3.80 (16) YES 11.31/3.80 (17) QDP 11.31/3.80 (18) UsableRulesProof [EQUIVALENT, 0 ms] 11.31/3.80 (19) QDP 11.31/3.80 (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] 11.31/3.80 (21) YES 11.31/3.80 (22) QDP 11.31/3.80 (23) UsableRulesProof [EQUIVALENT, 0 ms] 11.31/3.80 (24) QDP 11.31/3.80 (25) QDPOrderProof [EQUIVALENT, 10 ms] 11.31/3.80 (26) QDP 11.31/3.80 (27) DependencyGraphProof [EQUIVALENT, 0 ms] 11.31/3.80 (28) AND 11.31/3.80 (29) QDP 11.31/3.80 (30) MRRProof [EQUIVALENT, 12 ms] 11.31/3.80 (31) QDP 11.31/3.80 (32) PisEmptyProof [EQUIVALENT, 0 ms] 11.31/3.80 (33) YES 11.31/3.80 (34) QDP 11.31/3.80 (35) MRRProof [EQUIVALENT, 12 ms] 11.31/3.80 (36) QDP 11.31/3.80 (37) PisEmptyProof [EQUIVALENT, 0 ms] 11.31/3.80 (38) YES 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (0) 11.31/3.80 Obligation: 11.31/3.80 Q restricted rewrite system: 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 active(g(X)) -> mark(h(X)) 11.31/3.80 active(c) -> mark(d) 11.31/3.80 active(h(d)) -> mark(g(c)) 11.31/3.80 proper(g(X)) -> g(proper(X)) 11.31/3.80 proper(h(X)) -> h(proper(X)) 11.31/3.80 proper(c) -> ok(c) 11.31/3.80 proper(d) -> ok(d) 11.31/3.80 g(ok(X)) -> ok(g(X)) 11.31/3.80 h(ok(X)) -> ok(h(X)) 11.31/3.80 top(mark(X)) -> top(proper(X)) 11.31/3.80 top(ok(X)) -> top(active(X)) 11.31/3.80 11.31/3.80 The set Q consists of the following terms: 11.31/3.80 11.31/3.80 active(g(x0)) 11.31/3.80 active(c) 11.31/3.80 active(h(d)) 11.31/3.80 proper(g(x0)) 11.31/3.80 proper(h(x0)) 11.31/3.80 proper(c) 11.31/3.80 proper(d) 11.31/3.80 g(ok(x0)) 11.31/3.80 h(ok(x0)) 11.31/3.80 top(mark(x0)) 11.31/3.80 top(ok(x0)) 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (1) QTRS Reverse (SOUND) 11.31/3.80 We applied the QTRS Reverse Processor [REVERSE]. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (2) 11.31/3.80 Obligation: 11.31/3.80 Q restricted rewrite system: 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (3) DependencyPairsProof (EQUIVALENT) 11.31/3.80 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (4) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 G(active(X)) -> H(mark(X)) 11.31/3.80 G(active(X)) -> MARK(X) 11.31/3.80 C'(active(x)) -> D'(mark(x)) 11.31/3.80 C'(active(x)) -> MARK(x) 11.31/3.80 D'(h(active(x))) -> C'(g(mark(x))) 11.31/3.80 D'(h(active(x))) -> G(mark(x)) 11.31/3.80 D'(h(active(x))) -> MARK(x) 11.31/3.80 G(proper(X)) -> G(X) 11.31/3.80 H(proper(X)) -> H(X) 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 C'(proper(x)) -> OK(x) 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 D'(proper(x)) -> OK(x) 11.31/3.80 OK(g(X)) -> G(ok(X)) 11.31/3.80 OK(g(X)) -> OK(X) 11.31/3.80 OK(h(X)) -> H(ok(X)) 11.31/3.80 OK(h(X)) -> OK(X) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (5) DependencyGraphProof (EQUIVALENT) 11.31/3.80 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 9 less nodes. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (6) 11.31/3.80 Complex Obligation (AND) 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (7) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 H(proper(X)) -> H(X) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (8) UsableRulesProof (EQUIVALENT) 11.31/3.80 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (9) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 H(proper(X)) -> H(X) 11.31/3.80 11.31/3.80 R is empty. 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (10) QDPSizeChangeProof (EQUIVALENT) 11.31/3.80 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 11.31/3.80 11.31/3.80 From the DPs we obtained the following set of size-change graphs: 11.31/3.80 *H(proper(X)) -> H(X) 11.31/3.80 The graph contains the following edges 1 > 1 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (11) 11.31/3.80 YES 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (12) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 G(proper(X)) -> G(X) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (13) UsableRulesProof (EQUIVALENT) 11.31/3.80 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (14) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 G(proper(X)) -> G(X) 11.31/3.80 11.31/3.80 R is empty. 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (15) QDPSizeChangeProof (EQUIVALENT) 11.31/3.80 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 11.31/3.80 11.31/3.80 From the DPs we obtained the following set of size-change graphs: 11.31/3.80 *G(proper(X)) -> G(X) 11.31/3.80 The graph contains the following edges 1 > 1 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (16) 11.31/3.80 YES 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (17) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 OK(h(X)) -> OK(X) 11.31/3.80 OK(g(X)) -> OK(X) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (18) UsableRulesProof (EQUIVALENT) 11.31/3.80 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (19) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 OK(h(X)) -> OK(X) 11.31/3.80 OK(g(X)) -> OK(X) 11.31/3.80 11.31/3.80 R is empty. 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (20) QDPSizeChangeProof (EQUIVALENT) 11.31/3.80 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 11.31/3.80 11.31/3.80 From the DPs we obtained the following set of size-change graphs: 11.31/3.80 *OK(h(X)) -> OK(X) 11.31/3.80 The graph contains the following edges 1 > 1 11.31/3.80 11.31/3.80 11.31/3.80 *OK(g(X)) -> OK(X) 11.31/3.80 The graph contains the following edges 1 > 1 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (21) 11.31/3.80 YES 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (22) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 D'(h(active(x))) -> C'(g(mark(x))) 11.31/3.80 C'(active(x)) -> D'(mark(x)) 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 c'(active(x)) -> d'(mark(x)) 11.31/3.80 d'(h(active(x))) -> c'(g(mark(x))) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 c'(proper(x)) -> c'(ok(x)) 11.31/3.80 d'(proper(x)) -> d'(ok(x)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (23) UsableRulesProof (EQUIVALENT) 11.31/3.80 We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (24) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 D'(h(active(x))) -> C'(g(mark(x))) 11.31/3.80 C'(active(x)) -> D'(mark(x)) 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (25) QDPOrderProof (EQUIVALENT) 11.31/3.80 We use the reduction pair processor [LPAR04,JAR06]. 11.31/3.80 11.31/3.80 11.31/3.80 The following pairs can be oriented strictly and are deleted. 11.31/3.80 11.31/3.80 C'(active(x)) -> D'(mark(x)) 11.31/3.80 The remaining pairs can at least be oriented weakly. 11.31/3.80 Used ordering: Polynomial interpretation [POLO]: 11.31/3.80 11.31/3.80 POL(C'(x_1)) = x_1 11.31/3.80 POL(D'(x_1)) = 0 11.31/3.80 POL(active(x_1)) = 1 11.31/3.80 POL(g(x_1)) = 0 11.31/3.80 POL(h(x_1)) = 0 11.31/3.80 POL(mark(x_1)) = 0 11.31/3.80 POL(ok(x_1)) = x_1 11.31/3.80 POL(proper(x_1)) = x_1 11.31/3.80 POL(top(x_1)) = 1 + x_1 11.31/3.80 11.31/3.80 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 11.31/3.80 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (26) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 D'(h(active(x))) -> C'(g(mark(x))) 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (27) DependencyGraphProof (EQUIVALENT) 11.31/3.80 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (28) 11.31/3.80 Complex Obligation (AND) 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (29) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (30) MRRProof (EQUIVALENT) 11.31/3.80 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 11.31/3.80 11.31/3.80 Strictly oriented dependency pairs: 11.31/3.80 11.31/3.80 C'(proper(x)) -> C'(ok(x)) 11.31/3.80 11.31/3.80 Strictly oriented rules of the TRS R: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 11.31/3.80 Used ordering: Polynomial interpretation [POLO]: 11.31/3.80 11.31/3.80 POL(C'(x_1)) = 3*x_1 11.31/3.80 POL(active(x_1)) = 2*x_1 11.31/3.80 POL(g(x_1)) = 1 + 3*x_1 11.31/3.80 POL(h(x_1)) = x_1 11.31/3.80 POL(mark(x_1)) = 1 + 2*x_1 11.31/3.80 POL(ok(x_1)) = 2*x_1 11.31/3.80 POL(proper(x_1)) = 1 + 2*x_1 11.31/3.80 POL(top(x_1)) = 2*x_1 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (31) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 P is empty. 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (32) PisEmptyProof (EQUIVALENT) 11.31/3.80 The TRS P is empty. Hence, there is no (P,Q,R) chain. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (33) 11.31/3.80 YES 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (34) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 The TRS P consists of the following rules: 11.31/3.80 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (35) MRRProof (EQUIVALENT) 11.31/3.80 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 11.31/3.80 11.31/3.80 Strictly oriented dependency pairs: 11.31/3.80 11.31/3.80 D'(proper(x)) -> D'(ok(x)) 11.31/3.80 11.31/3.80 Strictly oriented rules of the TRS R: 11.31/3.80 11.31/3.80 ok(g(X)) -> g(ok(X)) 11.31/3.80 g(proper(X)) -> proper(g(X)) 11.31/3.80 11.31/3.80 Used ordering: Polynomial interpretation [POLO]: 11.31/3.80 11.31/3.80 POL(D'(x_1)) = 3*x_1 11.31/3.80 POL(active(x_1)) = 2*x_1 11.31/3.80 POL(g(x_1)) = 1 + 3*x_1 11.31/3.80 POL(h(x_1)) = x_1 11.31/3.80 POL(mark(x_1)) = 1 + 2*x_1 11.31/3.80 POL(ok(x_1)) = 2*x_1 11.31/3.80 POL(proper(x_1)) = 1 + 2*x_1 11.31/3.80 POL(top(x_1)) = 2*x_1 11.31/3.80 11.31/3.80 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (36) 11.31/3.80 Obligation: 11.31/3.80 Q DP problem: 11.31/3.80 P is empty. 11.31/3.80 The TRS R consists of the following rules: 11.31/3.80 11.31/3.80 ok(h(X)) -> h(ok(X)) 11.31/3.80 ok(top(X)) -> active(top(X)) 11.31/3.80 h(proper(X)) -> proper(h(X)) 11.31/3.80 g(active(X)) -> h(mark(X)) 11.31/3.80 mark(top(X)) -> proper(top(X)) 11.31/3.80 11.31/3.80 Q is empty. 11.31/3.80 We have to consider all minimal (P,Q,R)-chains. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (37) PisEmptyProof (EQUIVALENT) 11.31/3.80 The TRS P is empty. Hence, there is no (P,Q,R) chain. 11.31/3.80 ---------------------------------------- 11.31/3.80 11.31/3.80 (38) 11.31/3.80 YES 11.72/3.97 EOF