6.06/2.41 YES 6.06/2.42 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 6.06/2.42 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.06/2.42 6.06/2.42 6.06/2.42 Termination w.r.t. Q of the given QTRS could be proven: 6.06/2.42 6.06/2.42 (0) QTRS 6.06/2.42 (1) DependencyPairsProof [EQUIVALENT, 42 ms] 6.06/2.42 (2) QDP 6.06/2.42 (3) DependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.42 (4) AND 6.06/2.42 (5) QDP 6.06/2.42 (6) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.42 (7) QDP 6.06/2.42 (8) QReductionProof [EQUIVALENT, 0 ms] 6.06/2.42 (9) QDP 6.06/2.42 (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.06/2.42 (11) YES 6.06/2.42 (12) QDP 6.06/2.42 (13) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.42 (14) QDP 6.06/2.42 (15) QReductionProof [EQUIVALENT, 0 ms] 6.06/2.42 (16) QDP 6.06/2.42 (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.06/2.42 (18) YES 6.06/2.42 (19) QDP 6.06/2.42 (20) QDPOrderProof [EQUIVALENT, 59 ms] 6.06/2.42 (21) QDP 6.06/2.42 (22) DependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.42 (23) QDP 6.06/2.42 (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.06/2.42 (25) YES 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (0) 6.06/2.42 Obligation: 6.06/2.42 Q restricted rewrite system: 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (1) DependencyPairsProof (EQUIVALENT) 6.06/2.42 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (2) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) 6.06/2.42 A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 A__DIV(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 A__IF(true, X, Y) -> MARK(X) 6.06/2.42 A__IF(false, X, Y) -> MARK(Y) 6.06/2.42 MARK(minus(X1, X2)) -> A__MINUS(X1, X2) 6.06/2.42 MARK(geq(X1, X2)) -> A__GEQ(X1, X2) 6.06/2.42 MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) 6.06/2.42 MARK(div(X1, X2)) -> MARK(X1) 6.06/2.42 MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) 6.06/2.42 MARK(if(X1, X2, X3)) -> MARK(X1) 6.06/2.42 MARK(s(X)) -> MARK(X) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (3) DependencyGraphProof (EQUIVALENT) 6.06/2.42 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (4) 6.06/2.42 Complex Obligation (AND) 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (5) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (6) UsableRulesProof (EQUIVALENT) 6.06/2.42 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (7) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 6.06/2.42 R is empty. 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (8) QReductionProof (EQUIVALENT) 6.06/2.42 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (9) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 6.06/2.42 R is empty. 6.06/2.42 Q is empty. 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (10) QDPSizeChangeProof (EQUIVALENT) 6.06/2.42 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.06/2.42 6.06/2.42 From the DPs we obtained the following set of size-change graphs: 6.06/2.42 *A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) 6.06/2.42 The graph contains the following edges 1 > 1, 2 > 2 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (11) 6.06/2.42 YES 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (12) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (13) UsableRulesProof (EQUIVALENT) 6.06/2.42 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (14) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) 6.06/2.42 6.06/2.42 R is empty. 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (15) QReductionProof (EQUIVALENT) 6.06/2.42 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (16) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) 6.06/2.42 6.06/2.42 R is empty. 6.06/2.42 Q is empty. 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (17) QDPSizeChangeProof (EQUIVALENT) 6.06/2.42 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.06/2.42 6.06/2.42 From the DPs we obtained the following set of size-change graphs: 6.06/2.42 *A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) 6.06/2.42 The graph contains the following edges 1 > 1, 2 > 2 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (18) 6.06/2.42 YES 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (19) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) 6.06/2.42 A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 A__IF(true, X, Y) -> MARK(X) 6.06/2.42 MARK(div(X1, X2)) -> MARK(X1) 6.06/2.42 MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) 6.06/2.42 A__IF(false, X, Y) -> MARK(Y) 6.06/2.42 MARK(if(X1, X2, X3)) -> MARK(X1) 6.06/2.42 MARK(s(X)) -> MARK(X) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (20) QDPOrderProof (EQUIVALENT) 6.06/2.42 We use the reduction pair processor [LPAR04,JAR06]. 6.06/2.42 6.06/2.42 6.06/2.42 The following pairs can be oriented strictly and are deleted. 6.06/2.42 6.06/2.42 A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 MARK(s(X)) -> MARK(X) 6.06/2.42 The remaining pairs can at least be oriented weakly. 6.06/2.42 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 6.06/2.42 6.06/2.42 POL( A__DIV_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 6.06/2.42 POL( A__IF_3(x_1, ..., x_3) ) = x_2 + x_3 + 2 6.06/2.42 POL( mark_1(x_1) ) = x_1 6.06/2.42 POL( minus_2(x_1, x_2) ) = 0 6.06/2.42 POL( a__minus_2(x_1, x_2) ) = 0 6.06/2.42 POL( geq_2(x_1, x_2) ) = 0 6.06/2.42 POL( a__geq_2(x_1, x_2) ) = 0 6.06/2.42 POL( div_2(x_1, x_2) ) = 2x_1 + 2x_2 6.06/2.42 POL( a__div_2(x_1, x_2) ) = 2x_1 + 2x_2 6.06/2.42 POL( s_1(x_1) ) = x_1 + 1 6.06/2.42 POL( a__if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 6.06/2.42 POL( 0 ) = 0 6.06/2.42 POL( true ) = 0 6.06/2.42 POL( if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 6.06/2.42 POL( false ) = 0 6.06/2.42 POL( MARK_1(x_1) ) = x_1 + 2 6.06/2.42 6.06/2.42 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 6.06/2.42 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (21) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) 6.06/2.42 A__IF(true, X, Y) -> MARK(X) 6.06/2.42 MARK(div(X1, X2)) -> MARK(X1) 6.06/2.42 MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) 6.06/2.42 A__IF(false, X, Y) -> MARK(Y) 6.06/2.42 MARK(if(X1, X2, X3)) -> MARK(X1) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (22) DependencyGraphProof (EQUIVALENT) 6.06/2.42 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (23) 6.06/2.42 Obligation: 6.06/2.42 Q DP problem: 6.06/2.42 The TRS P consists of the following rules: 6.06/2.42 6.06/2.42 MARK(div(X1, X2)) -> MARK(X1) 6.06/2.42 MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) 6.06/2.42 A__IF(true, X, Y) -> MARK(X) 6.06/2.42 MARK(if(X1, X2, X3)) -> MARK(X1) 6.06/2.42 A__IF(false, X, Y) -> MARK(Y) 6.06/2.42 6.06/2.42 The TRS R consists of the following rules: 6.06/2.42 6.06/2.42 a__minus(0, Y) -> 0 6.06/2.42 a__minus(s(X), s(Y)) -> a__minus(X, Y) 6.06/2.42 a__geq(X, 0) -> true 6.06/2.42 a__geq(0, s(Y)) -> false 6.06/2.42 a__geq(s(X), s(Y)) -> a__geq(X, Y) 6.06/2.42 a__div(0, s(Y)) -> 0 6.06/2.42 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) 6.06/2.42 a__if(true, X, Y) -> mark(X) 6.06/2.42 a__if(false, X, Y) -> mark(Y) 6.06/2.42 mark(minus(X1, X2)) -> a__minus(X1, X2) 6.06/2.42 mark(geq(X1, X2)) -> a__geq(X1, X2) 6.06/2.42 mark(div(X1, X2)) -> a__div(mark(X1), X2) 6.06/2.42 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 6.06/2.42 mark(0) -> 0 6.06/2.42 mark(s(X)) -> s(mark(X)) 6.06/2.42 mark(true) -> true 6.06/2.42 mark(false) -> false 6.06/2.42 a__minus(X1, X2) -> minus(X1, X2) 6.06/2.42 a__geq(X1, X2) -> geq(X1, X2) 6.06/2.42 a__div(X1, X2) -> div(X1, X2) 6.06/2.42 a__if(X1, X2, X3) -> if(X1, X2, X3) 6.06/2.42 6.06/2.42 The set Q consists of the following terms: 6.06/2.42 6.06/2.42 mark(minus(x0, x1)) 6.06/2.42 mark(geq(x0, x1)) 6.06/2.42 mark(div(x0, x1)) 6.06/2.42 mark(if(x0, x1, x2)) 6.06/2.42 mark(0) 6.06/2.42 mark(s(x0)) 6.06/2.42 mark(true) 6.06/2.42 mark(false) 6.06/2.42 a__minus(x0, x1) 6.06/2.42 a__geq(x0, x1) 6.06/2.42 a__div(x0, x1) 6.06/2.42 a__if(x0, x1, x2) 6.06/2.42 6.06/2.42 We have to consider all minimal (P,Q,R)-chains. 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (24) QDPSizeChangeProof (EQUIVALENT) 6.06/2.42 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.06/2.42 6.06/2.42 From the DPs we obtained the following set of size-change graphs: 6.06/2.42 *MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) 6.06/2.42 The graph contains the following edges 1 > 2, 1 > 3 6.06/2.42 6.06/2.42 6.06/2.42 *MARK(div(X1, X2)) -> MARK(X1) 6.06/2.42 The graph contains the following edges 1 > 1 6.06/2.42 6.06/2.42 6.06/2.42 *MARK(if(X1, X2, X3)) -> MARK(X1) 6.06/2.42 The graph contains the following edges 1 > 1 6.06/2.42 6.06/2.42 6.06/2.42 *A__IF(true, X, Y) -> MARK(X) 6.06/2.42 The graph contains the following edges 2 >= 1 6.06/2.42 6.06/2.42 6.06/2.42 *A__IF(false, X, Y) -> MARK(Y) 6.06/2.42 The graph contains the following edges 3 >= 1 6.06/2.42 6.06/2.42 6.06/2.42 ---------------------------------------- 6.06/2.42 6.06/2.42 (25) 6.06/2.42 YES 6.31/2.47 EOF